Effect of Different Compatibilization Systems on the Rheological, Mechanical and Morphological Properties of Polypropylene/Polystyrene Blends
Abstract
:1. Introduction
- Copolymers;
- reactive graft copolymers;
- radical processing.
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Rheology
2.4. Mechanical Properties
2.5. Morphological Characterization
3. Results and Discussion
3.1. MFR
3.2. Dynamic Rheology
3.3. Extensional Rheology
3.4. SEM
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabu, T.; Grohens, Y.; Jyotishkumar, P. Characterization of Polymer Blends: Miscibility, Morphology and Interfaces; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Khan, I.; Mansha, M.; Mazumder, M.A.J. Polymer Blends. In Functional Polymers; Jafar Mazumder, M.A., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, Swizterland, 2018; pp. 1–38. [Google Scholar] [CrossRef]
- Starý, Z.; Pemsel, T.; Baldrian, J.; Münstedt, H. Influence of a compatibilizer on the morphology development in polymer blends under elongation. Polymer 2012, 53, 1881–1889. [Google Scholar] [CrossRef]
- Tavakoli Anaraki, F.; Saeb, M.R.; Rastin, H.; Ghiyasi, S.; Khonakdar, H.A.; Goodarzi, V.; Khalili, R.; Mostafapoor, F.; Jafari, S.H. A probe into the status quo of interfacial adhesion in the compatibilized ternary blends with core/shell droplets: Selective versus dictated compatibilization. J. Appl. Polym. Sci. 2017, 134, 45503. [Google Scholar] [CrossRef]
- Wroblewska, A.; Leoné, N.; Wildeman, S.; Bernaerts, K. Towards High-performance Materials Based on Carbohydrate-Derived Polyamide Blends. Polymers 2019, 11, 413. [Google Scholar] [CrossRef] [Green Version]
- Aranburu, N.; Eguiazábal, J. Improved Mechanical Properties of Compatibilized Polypropylene/Polyamide-12 Blends. Int. J. Polym. Sci. 2015, 2015, 742540. [Google Scholar] [CrossRef]
- Markovic, G.; Visakh, P. Polymer blends: State of art. In Recent Developments in Polymer Macro, Micro and Nano Blends; Visakh, P., Markovic, G., Pasquini, D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.; Fullana, A. Plastic flexible films waste management—A state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Maris, J.; Bourdon, S.; Brossard, J.M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Lyatskaya, Y.; Gersappe, D.; Gross, N.A.; Balazs, A.C. Designing Compatibilizers to Reduce Interfacial Tension in Polymer Blends. J. Phys. Chem. 1996, 100, 1449–1458. [Google Scholar] [CrossRef]
- Bertin, S.; Robin, J.J. Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 2002, 38, 2255–2264. [Google Scholar] [CrossRef]
- Bin Rusayyis, M.; Schiraldi, D.; Maia, J. Property/Morphology Relationships in SEBS-Compatibilized HDPE/Poly(phenylene ether) Blends. Macromolecules 2018, 51, 6513–6523. [Google Scholar] [CrossRef]
- Choudhary, V.; Varma, H.; Varma, I. Polyolefin blends: Effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. 1. Polymer 1991, 32, 2534–2540. [Google Scholar] [CrossRef]
- Graebling, D.; Lambla, M.; Wautier, H. PP/PE blends by reactive extrusion: PP rheological behavior changes. J. Appl. Polym. Sci. 1997, 66, 809–819. [Google Scholar] [CrossRef]
- Hulse, G.E.; Kersting, R.J.; Warfel, D.R. Chemistry of dicumyl peroxide-induced crosslinking of linear polyethylene. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 655–667. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Misra, B. Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Nechifor, M.; Tanasă, F.; Teacă, C.A.; Zănoagă, M. Compatibilization strategies toward new polymer materials from re-/up-cycled plastics. Int. J. Polym. Anal. Charact. 2018, 23, 740–757. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Liu, G.; Pu, S. Core/shell morphologies in recycled poly(ethylene terephthalate)/linear low-density polyethylene/poly(styrene-b-(ethylene-co-butylene)-b-styrene) ternary blends. Polym. Bull. 2017, 74, 4223–4233. [Google Scholar] [CrossRef]
- Chouiref, C.; Belhaneche-Bensemra, N. Regenerated LDPE/PS blends: Characterization and compatibilization. Int. J. Environ. Stud. 2012, 69, 881–887. [Google Scholar] [CrossRef]
- Mahendra, I.P.; Wirjosentono, B.; Tamrin, K.; Ismail, H.; Mendez, J.; Causin, V. The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. J. Polym. Res. 2019, 26, 215. [Google Scholar] [CrossRef]
- Raghu, P.; Nere, C.K.; Jagtap, R.N. Effect of styrene–isoprene–styrene, styrene–butadiene–styrene, and styrene–butadiene–rubber on the mechanical, thermal, rheological, and morphological properties of polypropylene/polystyrene blends. J. Appl. Polym. Sci. 2003, 88, 266–277. [Google Scholar] [CrossRef]
- Mustafa, S.; Azlan, M.; Fuad, M.; Ishak, Z.; Ishiaku, U. Polypropylene/Polystyrene blends-Preliminary studies for compatibilization by aromatic-grafted polypropylene. J. Appl. Polym. Sci. 2001, 82, 428–434. [Google Scholar] [CrossRef]
- Xie, X.M.; Zheng, X. Effect of addition of multifunctional monomers on one-step reactive extrusion of PP/PS blends. Mater. Des. 2001, 22, 11–14. [Google Scholar] [CrossRef]
- Li, R.; Zhang, X.; Zhou, L.; Dong, J.; Wang, D. In situ compatibilization of polypropylene/polystyrene blend by controlled degradation and reactive extrusion. J. Appl. Polym. Sci. 2009, 111, 826–832. [Google Scholar] [CrossRef]
- Altan, M. Thermoplastic Foams: Processing, Manufacturing, and Characterization. In Polymerization; IntechOpen: London, UK, 2018; pp. 117–137. [Google Scholar] [CrossRef] [Green Version]
- Kuzmanovic, M.; Delva, L.; Cardon, L.; Ragaert, K. The Effect of Injection Molding Temperature on the Morphology and Mechanical Properties of PP/PET Blends and Microfibrillar Composites. Polymers 2016, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Brostow, W.; Holjevac Grgurić, T.; Olea-Mejia, O.; Rek, V.; Unni, J. Polypropylene + Polystyrene Blends with a Compatibilizer. Part I. Morphology and Thermophysical Properties. e-Polymers 2008, 8. [Google Scholar] [CrossRef] [Green Version]
- Brostow, W.; Holjevac Grgurić, T.; Olea-Mejia, O.; Pietkiewicz, D.; Rek, V. Polypropylene + Polystyrene Blends with a Compatibilizer. Part 2. Tribological and Mechanical Properties. e-Polymers 2008, 8. [Google Scholar] [CrossRef] [Green Version]
- Equiza, N.; Yave, W.; Quijada, R.; Yazdani-Pedram, M. Use of SEBS/EPR and SBR/EPR as Binary Compatibilizers for PE/PP/PS/HIPS Blends: A Work Oriented to the Recycling of Thermoplastic Wastes. Macromol. Mater. Eng. 2007, 292, 1001–1011. [Google Scholar] [CrossRef]
- Santana, R.; Manrich, S. Studies on morphology and mechanical properties of PP/HIPS blends from postconsumer plastic waste. J. Appl. Polym. Sci. 2003, 87, 747–751. [Google Scholar] [CrossRef]
- Xanthos, M.; Patel, A.; Dey, S.; Dagli, S.; Jacob, C.; Nosker, T.; Renfree, R. Compatibilization of refined commingled post-consumer plastics. Adv. Polym. Technol. 1994, 13, 231–239. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Siqueira, D.D.; Araújo, E.M.; Wellen, R.M.R. Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Mater. Res. Express 2019, 6, 075316. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics-the Facts 2019. 2019. Available online: https://www.plasticseurope.org (accessed on 5 February 2020).
- Tostar, S.; Stenvall, E.; Foreman, M.; Boldizar, A. The Influence of Compatibilizer Addition and Gamma Irradiation on Mechanical and Rheological Properties of a Recycled WEEE Plastics Blend. Recycling 2016, 1, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.Y.; Chang, F.C. Polymer blends of PET–PS compatibilized by SMA and epoxy dual compatibilizers. J. Appl. Polym. Sci. 1999, 73, 2029–2040. [Google Scholar] [CrossRef]
- Chiou, Y.P.; Chang, D.Y.; Chang, F.C. In situ compatibility of polystyrene and liquid crystalline polymer blends. Polymer 1996, 37, 5653–5660. [Google Scholar] [CrossRef]
- Shuai, Z.; Jun, Z.; Lu, L.; Shicheng, Z.; Yaoqi, S.; Zhong, X. Relationship between Peroxide Initiators and Properties of Styrene Grafted Polypropylene via Reactive Extrusion. J. Macromol. Sci. Part B 2018, 57, 377–394. [Google Scholar] [CrossRef]
- Lagendijk, R.; Hogt, A.; Buijtenhuijs, A.; Gotsis, A. Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 2001, 42, 10035–10043. [Google Scholar] [CrossRef]
- Kopal, I.; Harničárová, M.; Valíček, J.; Kušnerová, M. Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network. Polymers 2017, 9, 519. [Google Scholar]
- Cazenave, M.; Derail, C.; Léonardi, F.; Marin, G.; Kappes, N. Rheological Properties of Hot Melt Pressure Sensitive Adhesives (HMPSAs) Based on Styrene–Isoprene Copolymers, Part 3: Rheological Behavior of Different Block Copolymers with High Diblock Content. J. Adhes. 2005, 81, 623–643. [Google Scholar] [CrossRef]
- Hwang, T.; Lee, S.; Yoo, Y.; Jang, K.; Lee, J. Reactive extrusion of polypropylene/polystyrene blends with supercritical carbon dioxide. Macromol. Res. 2012, 20, 559–567. [Google Scholar] [CrossRef]
- Basseri, G.; Mehrabi Mazidi, M.; Hosseini, F.; Razavi Aghjeh, M.K. Relationship among microstructure, linear viscoelastic behavior and mechanical properties of SBS triblock copolymer-compatibilized PP/SAN blend. Polym. Bull. 2013, 71, 465–486. [Google Scholar] [CrossRef]
- Zanjanijam, A.R.; Hakim, S.; Azizi, H. Morphological, dynamic mechanical, rheological and impact strength properties of the PP/PVB blends: The effect of waste PVB as a toughener. RSC Adv. 2016, 6, 44673–44686. [Google Scholar] [CrossRef]
- Mezger, T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; European Coatings Tech Files; Vincentz Network: Hanover, Germany, 2011. [Google Scholar]
- Macaúbas, P.; Demarquette, N. Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 2001, 42, 2543–2554. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Wang, K.; Zhang, Q.; Fu, Q. The effect of interfacial adhesion on the impact strength of immiscible PP/PETG blends compatibilized with triblock copolymers. Polymer 2009, 50, 4737–4744. [Google Scholar] [CrossRef]
- Hong, B.; Jo, W. Effects of molecular weight of SEBS triblock copolymer on the morphology, impact strength, and rheological property of syndiotactic polystyrene/ethylene–propylene rubber blends. Polymer 2000, 41, 2069–2079. [Google Scholar] [CrossRef]
- Yousefi, A.A.; Ait-Kadi, A.; Roy, C. Effect of elastomeric and plastomeric tougheners on different properties of recycled polyethylene. Adv. Polym. Technol. 1998, 17, 127–143. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, S.S.; Cho, B.G.; Hong, S.M. Reactive Extrusion of Polypropylene and Nylon Blends from Commingled Plastic Wastes. Macromol. Symp. 2007, 249–250, 485–492. [Google Scholar] [CrossRef]
- Dobrovszky, K.; Ronkay, F. Effects of SEBS-g-MA on rheology, morphology and mechanical properties of PET/HDPE blends. Int. Polym. Process. J. Polym. Process. Soc. 2015, 30, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Stanic, S.; Gottlieb, G.; Koch, T.; Göpperl, L.; Schmid, K.; Knaus, S.; Archodoulaki, V.M. Influence of Different Types of Peroxides on the Long-Chain Branching of PP via Reactive Extrusion. Polymers 2020, 12, 886. [Google Scholar] [CrossRef] [Green Version]
- Vega, J.F.; Santamaría, A.; Muñoz-Escalona, A.; Lafuente, P. Small-Amplitude Oscillatory Shear Flow Measurements as a Tool To Detect Very Low Amounts of Long Chain Branching in Polyethylenes. Macromolecules 1998, 31, 3639–3647. [Google Scholar] [CrossRef]
- Cheung, L.; Park, C.; Behravesh, A.H. Effect of branched structure on the cell morphology of extruded polypropylene foams I: Cell nucleation. In Technical Papers of the Annual Technical Conference; Society of Plastics Engineers Inc.: Brookfield, CT, USA, 1996; Volume 2, pp. 1941–1947. [Google Scholar]
- Vlachopoulos, J.; Polychronopoulos, N. Basic Concepts in Polymer Melt Rheology and Their Importance in Processing. In Applied Polymer Rheology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Chapter 7; pp. 1–27. [Google Scholar] [CrossRef]
- Trouton, F.T. On the coefficient of viscous traction and its relation to that of viscosity. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 1906, 77, 426–440. [Google Scholar] [CrossRef]
- Wagner, M.H.; Bastian, H.; Hachmann, P.; Meissner, J.; Kurzbeck, S.; Münstedt, H.; Langouche, F. The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol. Acta 2000, 39, 97–109. [Google Scholar]
- López-Barrón, C.; Tsou, A. Strain Hardening of Polyethylene/Polypropylene Blends via Interfacial Reinforcement with Poly(ethylene-cb-propylene) Comb Block Copolymers. Macromolecules 2017, 50, 2986–2995. [Google Scholar] [CrossRef]
- Lee, J.K.; Dae Han, C. Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer 2000, 41, 1799–1815. [Google Scholar] [CrossRef]
- Sundararaj, U.; Macosko, C.W.; Rolando, R.J.; Chan, H.T. Morphology development in polymer blends. Polym. Eng. Sci. 1992, 32, 1814–1823. [Google Scholar] [CrossRef]
- Choi, G.D.; Jo, W.H.; Kim, H.G. The effect of the viscosity ratio of dispersed phase to matrix on the rheological, morphological, and mechanical properties of polymer blends containing a LCP. J. Appl. Polym. Sci. 1996, 59, 443–452. [Google Scholar] [CrossRef]
- Van Puyvelde, P.; Velankar, S.; Moldenaers, P. Rheology and morphology of compatibilized polymer blends. Curr. Opin. Coll. Interface Sci. 2001, 6, 457–463. [Google Scholar] [CrossRef]
- Charoensirisomboon, P.; Inoue, T.; Solomko, S.; Sigalov, G.; Weber, M. Morphology of compatibilized polymer blends in terms of particle size–asphericity map. Polymer 2000, 41, 7033–7042. [Google Scholar] [CrossRef]
- Koning, C.; Van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23, 707–757. [Google Scholar] [CrossRef]
- Gleinser, W.; Braun, H.; Friedrich, C.; Cantow, H.J. Correlation between rheology and morphology of compatibilized immiscible blends. Polymer 1994, 35, 128–135. [Google Scholar] [CrossRef]
- Wang, L.; Tan, H.; Tang, T. Relationship between Branch Length and the Compatibilizing Effect of Polypropylene-g-Polystyrene Graft Copolymer on Polypropylene/Polystyrene Blends. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Huneault, M.A.; Li, H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 2007, 48, 270–280. [Google Scholar] [CrossRef]
- Halimatudahliana, A.; Ismail, H.; Nasir, M. Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Polym. Test. 2002, 21, 263–267. [Google Scholar] [CrossRef]
- Escudie, E.; Graciaa, A.; Lachaise, J. Pendent drop measurements of the polypropylene/polystyrene interfacial tension between 220 ∘C and 270 ∘C. Mater. Chem. Phys. 1986, 14, 239–246. [Google Scholar] [CrossRef]
- Chapleau, N.; Favis, B.D.; Carreau, P.J. Measuring the interfacial tension of polyamide/polyethylene and polycarbonate/polypropylene blends: Effect of temperature. Polymer 2000, 41, 6695–6698. [Google Scholar] [CrossRef]
- Patterson, H.T.; Hu, K.H.; Grindstaff, T.H. Measurement of interfacial and surface tensions in polymer systems. J. Polym. Sci. Part C Polym. Symp. 1971, 34, 31–43. [Google Scholar] [CrossRef]
- Datta, S.; Dharmarajan, N.; Ver Strate, G.; Ban, L. Impact toughened blends of styrene-maleic anhydride copolymer, polyethylene, and ethylene-propylene copolymer. Polym. Eng. Sci. 1993, 33, 721–735. [Google Scholar] [CrossRef]
- Michler, G.H.; Baltá-Calleja, F.J. Nano- and Micromechanics of Polymers. In Nano- and Micromechanics of Polymers; Michler, G.H., Baltá-Calleja, F.J., Eds.; Hanser: Munich, Germany, 2012; pp. I–XVIII. [Google Scholar] [CrossRef] [Green Version]
- Margolina, A.; Wu, S. Percolation model for brittle-tough transition in nylon/rubber blends. Polymer 1988, 29, 2170–2173. [Google Scholar] [CrossRef]
- Chandavasu, C.; Xanthos, M.; Sirkar, K.K.; Gogos, C.G. Polypropylene blends with potential as materials for microporous membranes formed by melt processing. Polymer 2002, 43, 781–795. [Google Scholar] [CrossRef]
- Fujiyama, M. Structure and properties of injection moldings of polypropylene/polystyrene blends. J. Appl. Polym. Sci. 1997, 63, 1015–1027. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Y.; Kong, M.; Yang, Q.; Li, G. Assessment of compatibilization efficiency of SEBS in the PP/PS blend. J. Appl. Polym. Sci. 2018, 135, 46244. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Zhang, Q.; Gao, X.L.; Fu, Q. The morphology and mechanical properties of dynamic packing injection molded PP/PS blends. Polymer 2003, 44, 1469–1480. [Google Scholar] [CrossRef]
- Díaz, M.F.; Barbosa, S.E.; Capiati, N.J. Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer 2005, 46, 6096–6101. [Google Scholar] [CrossRef]
- Tiwari, R.R.; Paul, D. Effect of organoclay on the morphology, phase stability and mechanical properties of polypropylene/polystyrene blends. Polymer 2011, 52, 1141–1154. [Google Scholar] [CrossRef]
- Moussaif, N.; Jérôme, R. Compatibilization of immiscible polymer blends (PC/PVDF) by the addition of a third polymer (PMMA): Analysis of phase morphology and mechanical properties. Polymer 1999, 40, 3919–3932. [Google Scholar] [CrossRef]
- Yoshida, M.; Ma, J.J.; Min, K.; White, J.L.; Quirk, R.P. Polyester-polystyrene block copolymers and their influence on phase morphology and mechanical properties in polymer blends. Polym. Eng. Sci. 1990, 30, 30–43. [Google Scholar] [CrossRef]
- Xie, Z.; Sheng, J.; Wan, Z. Mechanical properties and morphology of polypropylene/polystyrene blends. J. Macromol. Sci. Part B 2001, 40, 251–261. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Mechanical properties of carbon black-filled polypropylene/polystyrene blends containing styrene-butadiene-styrene copolymer. Polym. Eng. Sci. 2009, 49, 693–702. [Google Scholar] [CrossRef]
- Gao, J.; Fu, X.t.; Ding, M.m.; Fu, Q. Studies on partial compatibility of PP and PS. Chin. J. Polym. Sci. 2010, 28, 647–656. [Google Scholar] [CrossRef]
Sample | Composition Specification |
---|---|
PP | virgin PP |
PP–PS 90:10 | 90 wt.% PP–10 wt.% PS |
PP–PS 75:25 | 75 wt.% PP–25 wt.% PS |
PP–PS 90:10/75:25 SIS | 3 wt.% SIS |
PP–PS 90:10/75:25 LUC | 3 wt.% LUC |
PP–PS 90:10/75:25 PODIC | 20 mmol/kg PODIC (1 wt.%) |
Material | MFR (g/10 min) |
---|---|
PP | 2.7 |
PS | 2.5 |
SIS | 2.7 |
LUC | 5.7 |
Sample | (rad/s) | (kPa) | Interpretation |
---|---|---|---|
PP–PS 90:10 | 50.4 | 23.5 | |
PP–PS 90:10 SIS | 48.5 | 19.4 | MW ↑ MMD ↑ |
PP–PS 90:10 LUC | 62.6 | 23.1 | MW ↓ MMD ↑ |
PP–PS 90:10 PODIC | 48.1 | 22.9 | MW ↑ MMD ↑ |
PP–PS 75:25 | 52.3 | 21.1 | |
PP–PS 75:25 SIS | 56.5 | 24.8 | MW ↓ MMD ↓ |
PP–PS 75:25 LUC | 52.2 | 23.8 | MW ↑ MMD ↓ |
PP–PS 75:25 PODIC | 53.8 | 21.7 | MW ↓ MMD ↓ |
Sample | (MPa) | (%) | (MPa) |
---|---|---|---|
PP | 1616 ± 38 | 821 ± 3.5 | 37.0 ± 1.0 |
PP–PS 90:10 | 1955 ± 95 | 520 ± 8.7 | 34.6 ± 0.6 |
PP–PS 90:10 SIS | 1834 ± 30 | 620 ± 13.7 | 32.4 ± 0.3 |
PP–PS 90:10 LUC | 1634 ± 34 | 592 ± 34.8 | 31.5 ± 1.0 |
PP–PS 90:10 PODIC | 1948 ± 45 | 522 ± 10.3 | 34.5 ± 0.7 |
PP–PS 75:25 | 2028 ± 91 | 14 ± 1.7 | 35.3 ± 0.5 |
PP–PS 75:25 SIS | 1908 ± 65 | 234 ± 39 | 31.7 ± 0.7 |
PP–PS 75:25 LUC | 1810 ± 100 | 53 ± 9.1 | 27.3 ± 1.8 |
PP–PS 75:25 PODIC | 2061 ± 115 | 43 ± 9.3 | 32.2 ± 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seier, M.; Stanic, S.; Koch, T.; Archodoulaki, V.-M. Effect of Different Compatibilization Systems on the Rheological, Mechanical and Morphological Properties of Polypropylene/Polystyrene Blends. Polymers 2020, 12, 2335. https://doi.org/10.3390/polym12102335
Seier M, Stanic S, Koch T, Archodoulaki V-M. Effect of Different Compatibilization Systems on the Rheological, Mechanical and Morphological Properties of Polypropylene/Polystyrene Blends. Polymers. 2020; 12(10):2335. https://doi.org/10.3390/polym12102335
Chicago/Turabian StyleSeier, Martina, Sascha Stanic, Thomas Koch, and Vasiliki-Maria Archodoulaki. 2020. "Effect of Different Compatibilization Systems on the Rheological, Mechanical and Morphological Properties of Polypropylene/Polystyrene Blends" Polymers 12, no. 10: 2335. https://doi.org/10.3390/polym12102335
APA StyleSeier, M., Stanic, S., Koch, T., & Archodoulaki, V.-M. (2020). Effect of Different Compatibilization Systems on the Rheological, Mechanical and Morphological Properties of Polypropylene/Polystyrene Blends. Polymers, 12(10), 2335. https://doi.org/10.3390/polym12102335