Synthesis and Properties of Thiophene and Aniline Copolymer Using Atmospheric Pressure Plasma Jets Copolymerization Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Preparation of Blended Solution and Deposition of Copolymer Thin Film
2.3. Field Emission-Scanning Electron Microscopy
2.4. Atomic Force Microscopy
2.5. Fourier Transformation Infrared Spectroscopy
2.6. X-ray Photoelectron Spectroscopy
2.7. Time of Flight-Secondary Ion Mass Spectrometry
2.8. Two-Probe Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeon, S.J.; Han, Y.W.; Moon, D.K. Drastic Changes in Properties of Donor−Acceptor Polymers Induced by Asymmetric Structural Isomers for Application to Polymer Solar Cells. Appl. Mater. Interfaces 2019, 11, 9239–9250. [Google Scholar] [CrossRef] [PubMed]
- Che, H.; Lui, C.; CHe, G.; Dong, H.; Li, C.; Song, N.; Li, C. Facile construction of porous intramolecular g-C3N4-based donor–acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273. [Google Scholar] [CrossRef]
- Yan, S.; Li, W.; Dai, Y.; Ouyang, M.; Zhang, Y.; Zhang, C. Swivel-Cruciform Configuration Induced Electrochromic Fast Switching Property of Donor-Acceptor Conjugated Polymer Containing 5,5’-Bibenzothiadiazole. J. Electrochem. Soc. 2018, 165, H342–H347. [Google Scholar] [CrossRef]
- Kim, M.; Ryu, S.U.; Park, S.A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Adv. Funct. Mater. 2020, 30, 1904545. [Google Scholar] [CrossRef]
- Özçiçek, N.P.; Pekmez, K.; Holze, R.; Yıldız, A. Spectroelectrochemical Investigations of Aniline–Thiophene Copolymers in Acetonitrile. J. Appl. Polym. Sci. 2003, 90, 3417–3423. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pathak, D.K.; Tanwar, M.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Polythiophene−PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Appl. Electron. Mater. 2019, 1, 58–63. [Google Scholar] [CrossRef]
- Balan, A.; Gunbas, G.; Durmus, A.; Toppare, L. Donor-Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the “Donor Unit”. Chem. Mater. 2008, 20, 7510–7513. [Google Scholar] [CrossRef]
- Zamora, P.P.; Camarada, M.B.; Jessop, I.A.; Díaz, F.R.; Valle, M.A.; Carrin, L.; Louarn, G.; Bernede, J.C. Synthesis, Characterization, Morphology and Photovoltaic Properties of Aniline-Tiophene Based Polymers. Int. J. Electrochem. Sci. 2012, 7, 8276–8287. [Google Scholar]
- Wang, S.; Jin, X.; Yao, B.; Du, D.; Dong, L.; Wang, X.; Huang, W. Influence of the molecular weight in P3HT block on fully conjugated block copolymers. Synth. Met. 2019, 253, 20–25. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, Z.; Huang, F.; Hong, W.; Chen, X. Metal-free hydrophilic D–A conjugated polyelectrolyte dots/g-C3N4 nanosheets heterojunction for efficient and irradiation-stable water-splitting photocatalysis. Appl. Catal. B Environ. 2020, 270, 118852. [Google Scholar] [CrossRef]
- Li, F.; Song, X.; Zhang, K.; Shahid, B.; Wang, Q.; Yu, L.; Zhu, D.; Sun, M. Carbazole side-chained benzodithiophene based two-dimensional D–A conjugated photovoltaic polymers. Dyes Pigment. 2019, 170, 107548. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Zhang, Y.; Wang, X.; Zhang, S. Synthesis of low band-gap 2D conjugated polymers and their application for organic field effect transistors and solar cells. Org. Electron. 2019, 64, 27–36. [Google Scholar] [CrossRef]
- Udum, Y.A.; Pekmez, K.; Yıldız, A. Electrochemical preparation of a soluble conducting aniline–thiophene copolymer. Eur. Polym. J. 2005, 41, 1136–1142. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, L.; Chen, J.; Gal, J.-Y.; Wu, H. Synthesis and characterization of aniline and aniline-o-sulfonic acid copolymers. Eur. Polym. J. 2007, 43, 2072–2079. [Google Scholar] [CrossRef]
- Thiry, D.; Konstantinidis, S.; Cornil, J.; Snyders, R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Film. 2016, 606, 19–44. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-H.; Choi, E.-H.; Kim, K.-M.; Kim, K.-N. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 2014, 47, 235402. [Google Scholar] [CrossRef]
- Muzammil, I.; Li, Y.; Lei, M. Tunable wettability and pH-responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane. Plasma Process. Polym. 2017, 14, e1700053. [Google Scholar] [CrossRef]
- Manakhov, A.; Michlíček, M.; Nečas, D.; Polčák, J.; Makhneva, E.; Eliáš, M.; Zajíčková, L. Carboxyl-rich coatings deposited by atmospheric plasma co-polymerization of maleic anhydride and acetylene. Surf. Coat. Technol. 2016, 295, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Park, C.-S.; Kim, W.H.; Shin, B.J.; Hong, J.G.; Park, T.S.; Seo, J.H.; Tae, H.-S. Influences of guide-tube and bluff-body on advanced atmospheric pressure plasma source for single-crystalline polymer nanoparticle synthesis at low temperature. Phys. Plasmas 2017, 24, 023506. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-S.; Kim, D.Y.; Kim, D.H.; Lee, H.-K.; Shin, B.J.; Tae, H.-S. Humidity-independent conducting polyaniline films synthesized using advanced atmospheric pressure plasma polymerization with in-situ iodine doping. Appl. Phys. Lett. 2017, 110, 033502. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, H.-J.; Park, C.-S.; Shin, B.J.; Seo, J.H.; Tae, H.-S. Atmospheric pressure plasma polymerization using double grounded electrodes with He/Ar mixture. AIP Adv. 2015, 5, 097137. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, C.-S.; Shin, B.J.; Seo, J.H.; Tae, H.-S. Uniform Area Treatment for Surface Modification by Simple Atmospheric Pressure Plasma Treatment Technique. IEEE Access 2019, 7, 103727–103737. [Google Scholar] [CrossRef]
- Park, C.-S.; Jung, E.Y.; Jang, H.J.; Bae, G.T.; Shin, B.J.; Tae, H.-S. Synthesis and Properties of Plasma-Polymerized Methyl Methacrylate via the Atmospheric Pressure Plasma Polymerization Technique. Polymers 2019, 11, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.-S.; Jung, E.Y.; Kim, D.H.; Kim, D.Y.; Lee, H.-K.; Shin, B.J.; Lee, D.H.; Tae, H.-S. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine. Materials 2017, 10, 1272. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-C.; Liu, W.-J. Study of Dye Sensitized Solar Cell Application of TiO2 Films by Atmospheric Pressure Plasma Deposition Method. In Proceedings of the 2016 International Conference on Electronics Packaging (ICEP2016), Sapporo, Japan, 20–22 April 2016. [Google Scholar]
- Coates, J.J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar] [CrossRef]
- Butoi, B.; Groza, A.; Dinca, P.; Balan, A.; Barna, V. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers 2017, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Kadac, K.; Nowaczyk, J. Polythiophene nanoparticles in aqueous media. J. Appl. Polym. Sci. 2016, 23, 43495. [Google Scholar] [CrossRef]
- Teslaru, T.; Topala, I.; Dobromir, M.; Pohoata, V.; Curecheriu, L.; Dumitrascu, N. Polythiophene films obtained by polymerization under atmospheric pressure plasma conditions. Mater. Chem. Phys. 2016, 169, 120–127. [Google Scholar] [CrossRef]
- Dams, R.; Vangeneugden, D.; Vanderzande, D. Plasma Deposition of Thiophene Derivatives Under Atmospheric Pressure. Chem. Vap. Depos. 2006, 12, 719–727. [Google Scholar] [CrossRef]
- Du, X.; Xu, Y.; Xiong, L.; Bai, Y.; Zhu, J.; Mao, S. Polyaniline with High Crystallinity Degree: Synthesis, Structure, and Electrochemical Properties. J. Appl. Poly. Sci. 2014, 19, 40827. [Google Scholar] [CrossRef]
- Mathai, C.J.; Saravanan, S.; Anantharaman, M.R.; Venkitachalam, S.; Jayalekshmi, S. Characterization of low dielectric constant polyaniline thin film synthesized by ac plasma polymerization technique. J. Phys. D Appl. Phys. 2002, 68, 240–245. [Google Scholar] [CrossRef]
- Guo, H.; He, W.; Lu, Y.; Zhang, X. Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 2015, 92, 133–141. [Google Scholar] [CrossRef]
- Mori, D.; Benten, H.; Okada, I.; Ohkita, H.; Ito, S. Low-Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4%. Adv. Energy Mater. 2013, 4, 1301006. [Google Scholar] [CrossRef]
- Karami, H.; Jafari, S.; Goli, F. Synthesis of Aniline—Pyrrole Copolymer Nanostructures by the Pulsed Galvanostatic Polymerization. Int. J. Electrochem. Sci. 2016, 11, 3056–3073. [Google Scholar] [CrossRef]
- Bouabdallaoui, M.; Aouzal, Z.; Jadi, B.S.; Jaouhari, E.A.; Bazzaoui, M.; Lévi, G.; Aubard, J.; Bazzaoui, E.A. X-ray photoelectron and in situ and ex situ resonance Raman spectroscopic investigations of polythiophene overoxidation. J Solid State Electrochem. 2017, 21, 3519–3532. [Google Scholar] [CrossRef]
- Elmas, S.; Beelders, W.; Nash, J.; Macdonald, T.J.; Jasieniak, M.; Griesser, H.J.; Nann, T. Photo-doping of plasma-deposited polyaniline (PAni). RSC Adv. 2016, 6, 70691. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, D.; Pan, Z. The Effect of Polyaniline (PANI) Coating via Dielectric-Barrier Discharge (DBD) Plasma on Conductivity and Air Drag of Polyethylene Terephthalate (PET) Yarn. Polymers 2018, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Golczak, S.; Kanciurzewska, A.; Fahlman, M.; Langer, K.; Langer, J.J. Comparative XPS surface study of polyaniline thin films. Solid State Ion. 2008, 179, 2234–2239. [Google Scholar] [CrossRef]
- Pron, A.; Rannou, P. Processible conjugated polymers: From organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 2002, 27, 135–190. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017, 29, 10248–10283. [Google Scholar] [CrossRef]
- Mahat, M.M.; Mawad, D.; Nelson, G.W.; Fearn, S.; Palgrave, R.G.; Payne, D.J.; Stevens, M.M. Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. J. Mater. Chem. 2015, 3, 7180. [Google Scholar] [CrossRef]
- Morea, G.; Sabbatini, L.; Zamdonin, P.G. Modification of Polybithiophene by Electrochemical Cycling Studied by ToF-SIMS and XPS. Macromolecules 1991, 24, 3630–3637. [Google Scholar] [CrossRef]
- Awsiuk, K.; Budkowski, A.; Marzec, M.M.; Petrou, P.; Rysz, J.; Bernasik, A. Effects of Polythiophene Surface Structure on Adsorption and Conformation of Bovine Serum Albumin: A Multivariate and Multitechnique Study. Langmuir 2014, 30, 13925–13933. [Google Scholar] [CrossRef] [PubMed]
Solution | Liquid Monomer (Aniline + Thiophene), 40 mL | |||||
---|---|---|---|---|---|---|
Blending conditions | case I | case II | case III | case IV | case V | |
Thiophene (%) | 0 | 25 | 50 | 75 | 100 | |
Aniline (%) | 100 | 75 | 50 | 25 | 0 | |
Ar gas for vaporization | 100 sccm | |||||
Ar gas for discharge | 2500 sccm | |||||
Voltage | 23 kV | |||||
Frequency | 26 kHz | |||||
Deposition time | 8 min (30 min in case I) | |||||
Deposition temperature | R. T. |
Wavenumber (cm−1) | Assignment of FT-IR Absorption Peak | |
---|---|---|
PANI peak | 695 | meta substitutions, 1, 3 disubstitution in benzene ring |
754 | ortho substitutions, 1, 2 disubstitution in benzene ring | |
1500 | C=C stretching vibration of benzenoid ring | |
1610 | C=C stretching vibration of quinoid ring | |
1676 | C=N stretching vibration of quinoid ring | |
PTh peak | 799 | C–S stretching vibration |
1400 | C=C stretching vibration of thiophene ring | |
1676 | C=O stretching vibration | |
1716 | C=O stretching vibration | |
Common peak | 965 | C–H out-plane bending of aromatic |
1061 | C–H in-plane bending of aromatic | |
2888 | C–H stretching vibration in CH2 | |
2927 | C–H stretching vibration in CH3 |
Sample | Case I | Case II | Case III | Case IV | Case V |
---|---|---|---|---|---|
Rq | 8.9 nm | 58.2 nm | 24.1 nm | 48.3 nm | 59.2 nm |
Ra | 5.7 nm | 42.9 nm | 17.5 nm | 36.6 nm | 44.2 nm |
Conditions | C 1s (Atomic %) | O 1s (Atomic %) | N 1s (Atomic %) | S 2p (Atomic %) |
---|---|---|---|---|
case II | 61.5 | 21.0 | 4.5 | 13.0 |
case IV | 62.9 | 20.6 | 2.5 | 14.0 |
Composition of Correlative Functional Group | ||||
---|---|---|---|---|
Peak Assignment | Composition (%) | |||
Binding Energy (eV) | Case II | Case IV | ||
C 1s (%) | C=C | 284.1 | 14.5 | 10.0 |
C–C/C–H | 285.0 | 36.9 | 37.4 | |
C–N | 285.9 | 23.8 | 19.2 | |
C–O | 286.9 | 16.8 | 17.7 | |
C=O | 288.1 | 4.9 | 13.2 | |
O–C=O | 289.7 | 3.1 | 2.5 | |
N 1s (%) | =N– | 398.5 | 22.8 | 66.5 |
–NH– | 400.4 | 51.4 | 16.3 | |
=NH+ | 402.1 | 25.8 | 17.2 | |
–NH–/=N– | – | 2.3 | 0.3 | |
S 2p (%) | C–S–C | 164.1 | 68.1 | 49.5 |
C–SO–C | 165.7 | 19.0 | 38.3 | |
C–SO2–C | 168.1 | 12.9 | 12.2 | |
O 1s (%) | S=O | 531.2 | 67.2 | 77.5 |
O–C–O | 532.6 | 20.8 | 14.2 | |
O=C–O | 533.9 | 12.0 | 8.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.J.; Park, C.-S.; Jung, E.Y.; Bae, G.T.; Shin, B.J.; Tae, H.-S. Synthesis and Properties of Thiophene and Aniline Copolymer Using Atmospheric Pressure Plasma Jets Copolymerization Technique. Polymers 2020, 12, 2225. https://doi.org/10.3390/polym12102225
Jang HJ, Park C-S, Jung EY, Bae GT, Shin BJ, Tae H-S. Synthesis and Properties of Thiophene and Aniline Copolymer Using Atmospheric Pressure Plasma Jets Copolymerization Technique. Polymers. 2020; 12(10):2225. https://doi.org/10.3390/polym12102225
Chicago/Turabian StyleJang, Hyo Jun, Choon-Sang Park, Eun Young Jung, Gyu Tae Bae, Bhum Jae Shin, and Heung-Sik Tae. 2020. "Synthesis and Properties of Thiophene and Aniline Copolymer Using Atmospheric Pressure Plasma Jets Copolymerization Technique" Polymers 12, no. 10: 2225. https://doi.org/10.3390/polym12102225
APA StyleJang, H. J., Park, C.-S., Jung, E. Y., Bae, G. T., Shin, B. J., & Tae, H.-S. (2020). Synthesis and Properties of Thiophene and Aniline Copolymer Using Atmospheric Pressure Plasma Jets Copolymerization Technique. Polymers, 12(10), 2225. https://doi.org/10.3390/polym12102225