Platinum-Catalyzed Hydrosilylation in Polymer Chemistry
Abstract
:1. Introduction
2. Overview of Hydrosilylation
2.1. The General Mechanism of Action of Organometallic Catalysts in Hydrosilylation Processes
- IHS—oxidative addition of Si–H bonds to platinum;
- IIHS—migratory insertion of the coordinated alkene to Pt–H bond;
- IIIHS—reductive elimination with the formation of Si–C bonds;
- The mechanism of this transformation is presented in Figure 3.
2.2. Hydrosilylation in the Crosslinking of Polydimethylsiloxane Polymers
2.3. Karstedt’s Catalyst
2.4. Platinum Phosphine Complexes
2.5. Platinum(0) Complexes with Carbenes
2.6. Lamoreaux Catalyst
2.7. Ashby’s Catalyst
2.8. Catalysts Based on Pt(II) Complexes
2.9. Encapsulated Catalysts
2.10. “Sleeping” Platinum Complexes with Inhibitory Ligands
2.11. Photoactivated Hydrosilylation
2.12. Hydrosilylation with Discrete Platinum Particles
2.13. Mechanistic Analysis of Hydroslylation Reaction
3. Conclusions
- (1)
- Most of these catalysts are used in the production of silicone coatings and self-sealing tapes. This application requires an increased rate of coating formation, which at the moment is provided by a relatively high concentration of catalyst (100–200 ppm). In this regard, the development of available and cheap catalysts possessing high activity is relevant.
- (2)
- In the production of silicon rubber mixtures, the determining factor is a long shelf life, as well as high conversion. Therefore, for the silicone rubber industry, the catalysts that exhibit temperature-controlled activity and provide increased TOF values are required. A decrease in platinum concentration due to increased catalyst stability is also encouraged.
- (3)
- An equally important area is the preparation of organosilanes with various functional groups. In this case, the hydrosilylation reaction is crucial. Catalysts with high selectivity for a particular Si–H bond addition product and with increased stability in the catalytic cycle are the most demanded.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marciniec, B.; Gulinski, J.; Maciejewski, H. Hydrosilylation. In Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, NY, USA, 2003; Volume 4, pp. 107–152. ISBN 978-1-4020-8171-2/978-1-4020-8172-9. [Google Scholar]
- Lewis, L.N.; Stein, J.; Gao, Y.; Colborn, R.E.; Hutchins, G. Platinum catalysts used in the silicone industry. Platin. Metals Rev. 1997, 41, 66–75. [Google Scholar]
- Chalk, A.J.; Harrod, J.F. Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes. J. Am. Chem. Soc. 1965, 87, 16–21. [Google Scholar] [CrossRef]
- Ojima, I.; Li, Z.; Zhu, J. Recent advances in the hydrosilylation and related reactions. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, NY, USA, 1998; Chapter 29; Volume 2. [Google Scholar]
- Roy, A.K. A Review of Recent Progress in Catalyzed Homogeneous Hydrosilation (Hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1–59. [Google Scholar] [CrossRef]
- Eckberg, R. Rhodium catalyzed silicone rubber compositions. U.S. Patent 4,262,107, 14 April 1981. [Google Scholar]
- Park, K.H.; Kim, S.Y.; Son, S.U.; Chung, Y.K. Use of Rhodium N-Heterocyclic Carbene Complexes in Catalytic Cyclization and Hydrosilylation of 1,6-Enynes to 2-Methyl-1-silylmethylidene-2-cyclopentane. Eur. J. Org. Chem. 2003, 4341–4345. [Google Scholar] [CrossRef]
- Esteruelas, M.A.; Herrero, J.; Oro, L.A. Exclusive formation of cis-PhCH:CH(SiEt3) by addition of triethylsilane to phenylacetylene catalyzed by ruthenium complex [(Me2CH)3P]2RuHCl(CO). Organometallics 1993, 12, 2377–2379. [Google Scholar] [CrossRef]
- Maruyama, Y.; Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. Mechanistic study of ruthenium-catalyzed hydrosilation of 1- (Trimethylsilyl)-1-buten-3-yne. J. Am. Chem. Soc. 1998, 120, 1421–1429. [Google Scholar] [CrossRef]
- Hilal, H.S.; Khalaf, S.; Jondi, W. Cluster versus non-cluster catalysis in olefin thermal isomerization and hydrosilylation in the presence of Ru3(CO)12. J. Organomet. Chem. 1993, 452, 167–173. [Google Scholar] [CrossRef]
- Uozumi, Y.; Tsuji, H.; Hayashi, T. Cyclization of o-Allylstyrene via Hydrosilylation: Mechanistic Aspects of Hydrosilylation of Styrenes Catalyzed by Palladium-Phosphine Complexes. J. Org. Chem. 1998, 63, 6137–6140. [Google Scholar] [CrossRef]
- LaPointe, A.M.; Rix, F.C.; Brookhart, M. Mechanistic studies of palladium (II)-catalyzed hydrosilation and dehydrogenative silation reactions. J. Am. Chem. Soc. 1997, 119, 906–917. [Google Scholar] [CrossRef]
- Fontaine, F.G.; Nguyen, R.V.; Zargarian, D. Hydrosilylation of alkenes and ketones catalyzed by nickel (II) indenyl complexes. Can. J. Chem. 2003, 81, 1299–1306. [Google Scholar] [CrossRef]
- Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. Completely Selective Synthesis of (E)-β-(Triethylsilyl) Styrenes by Fe3(CO)12-Catalyzed Reaction of Styrenes with Triethylsilane. J. Organomet. Chem. 1993, 456, 45–47. [Google Scholar] [CrossRef]
- Zhao, C.X.; Duffey, M.O.; Taylor, S.J.; Morken, J.P. Enantio- and diastereoselective reductive aldol reactions with iridium-pybox catalysts. Org. Lett. 2001, 3, 1829–1831. [Google Scholar] [CrossRef] [PubMed]
- Tanke, R.S.; Crabtree, R.H. Unusual Activity and Selectivity in Alkyne Hydrosilylation with an Iridium Catalyst Stabilized by an O-Donor Ligand. J. Am. Chem. Soc. 1990, 112, 7984–7989. [Google Scholar] [CrossRef]
- Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Why does the rhodium-catalyzed hydrosilylation of alkenes take place through a modified Chalk-Harrod mechanism? A theoretical study. Organometallics 2002, 21, 3788–3802. [Google Scholar] [CrossRef]
- Hua, Y.; Nguyen, H.H.; Trog, G.; Berlin, A.S.; Jeon, J. Rhodium-catalyzed alkene hydrosilylation via a hydride shuttle process by diene ligands: Dramatic enhancement of regio- and diastereoselectivity. Eur. J. Org. Chem. 2014, 2014, 5890–5895. [Google Scholar] [CrossRef]
- Marciniec, B. Catalysis by transition metal complexes of alkene silylation—Recent progress and mechanistic implications. Coord. Chem. Rev. 2005, 249, 2374–2390. [Google Scholar] [CrossRef]
- Meister, T.K.; Riener, K.; Gigler, P.; Stohrer, J.; Herrmann, W.A.; Kühn, F.E. Platinum Catalysis Revisited-Unraveling Principles of Catalytic Olefin Hydrosilylation. ACS Catal. 2016, 6, 1274–1284. [Google Scholar] [CrossRef]
- Lewis, L.N.; Colborn, R.E.; Grade, H.; Sumpter, C.A.; Bryant, G.L.; Scott, R.A. Mechanism of Formation of Platinum(0) Complexes Containing Silicon-Vinyl Ligands. Organometallics 1995, 14, 2202–2213. [Google Scholar] [CrossRef]
- Troegel, D.; Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 2011, 255, 1440–1459. [Google Scholar] [CrossRef]
- Holländer, J.; Hakala, R.; Suominen, J.; Moritz, N.; Yliruusi, J.; Sandler, N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int. J. Pharm. 2018, 544, 433–442. [Google Scholar] [CrossRef]
- Zheng, P.; McCarthy, T.J. D4H/D4V Silicone: A Replica Material with Several Advantages for Nanoimprint Lithography and Capillary Force Lithography. Langmuir 2011, 267, 7976–7979. [Google Scholar] [CrossRef] [PubMed]
- Willing, N.D. Catalysts for the reaction of = SiH with organic compounds containing aliphatic unsaturation. U.S. Patent 3,419,593, 31 December 1968. [Google Scholar]
- Karstedt, B. Platinum-vinylsiloxanes. U.S. Patent 3,715,334, 6 February 1973. [Google Scholar]
- Koellnberger, A. Curable Silicone Compositions. U.S. Patent 2009/0088524 A1, 2 April 2009. [Google Scholar]
- Marrot, S.; Maadadi, Y. Hydrosilylation Reaction Inhibitors, and Use Thereof in a Coating Method. U.S. Patent 2012/0328787 A1, 27 December 2012. [Google Scholar]
- Eckberg, R.P. Silicone release coatings and inhibitors. U.S. Patent 4,347,346, 31 August 1982. [Google Scholar]
- Melancon, K.C. Latently-Curable Organosilicone Release Coating Composition. U.S. Patent 4,533,575, 6 August 1985. [Google Scholar]
- Kookootsedes, G.J.; Plueddemann, E.P. Acetylenic Inhibited Platinum Catalyzed Organopolysiloxane Composition. U.S. Patent 3,445,420, 20 May 1969. [Google Scholar]
- Chandra, G.; Lo, P.Y.K. Platinum (O) alkyne complexes. U.S. Patent 4,603,215, 29 June 1986. [Google Scholar]
- Koellnberger, A. Curable Silicone Compositions. U.S. Patent 2011/0015336 A1, 20 January 2011. [Google Scholar]
- Matsushita, T.; Takuman, O. Silicone Rubber Composition Having Flame-Retardant and Electrical Insulating Properties. EP Patent 0,822,231 A2, 4 April 1998. [Google Scholar]
- Sumpter, C.A.; Lewis, L.N.; Lawrence, W.B. Heat Curable Organopolysiloxane Compositions, Preformed Latent Platinum Catalysts, and Methods for Making. U.S. Patent 5,331,075 A, 19 July 1994. [Google Scholar]
- Sprengers, J.W.; De Greef, M.; Duin, M.A.; Elsevier, C.J. Stable Platinum(0) Catalysts for Catalytic Hydrosilylation of Styrene and Synthesis of [Pt(Ar-bian)(η2-alkene)] Complexes. Eur. J. Inorg. Chem. 2003, 3811–3819. [Google Scholar] [CrossRef]
- Dong, C.; Yuan, C.; Cui, Y.-M.; Zheng, Z.-J.; Cao, J.; Xu, Z.; Xu, L.-W. A pronounced ligand effect on platinum-catalyzed hydrosilylation of terminal alkynes. Appl. Organomet. Chem. 2017, 32, e4037. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Lappert, M.F.; MacBeath, C.; Scott, F.P.E.; Warhurst, N.J.W. The synthesis and characterisation of some divinyldisiloxane-(tertiary phosphine) complexes of platinum(0) and nickel(0). J. Organomet. Chem. 1997, 528, 185–190. [Google Scholar] [CrossRef]
- Chandra, G.; Lo, P.Y.; Hitchcock, P.B.; Lappert, M.F. A Convenient And Novel Route To Bls(ή-alkyne)platinum(0) And Other Platinum(o) Complexes From Speler’S Hydrosilylation Catalyst H2[PtCl6]·xH2O. X-ray Structure of [Pt{(ή-CH2—CHSiMe2)2O}(P-t-Bu3)]. Organometallics 1987, 6, 191–192. [Google Scholar] [CrossRef]
- Chandra, G.; Lo, P.Y.K. Platinum-phosphine-vinylsiloxane complexes. U.S. Patent 4,593,084 A, 3 June 1986. [Google Scholar]
- Kownacki, I.; Marciniec, B.; Steinberger, H.; Kubicki, M.; Hoffmann, M.; Ziarko, A.; Szubert, K.; Majchrzak, M.; Rubinsztajn, S. Effect of triorganophosphites on platinum catalyzed curing of silicon rubber. Appl. Catal. A Gen. 2009, 362, 106–114. [Google Scholar] [CrossRef]
- Steinberger, H.; Marciniec, B.; Kownacki, I. Curable Silicone Compositions Comprising Organo-silylphosphites. WO Patent 2010/009754 A1, 28 January 2010. [Google Scholar]
- Eckberg, R.P. Solventless Release Compositions, Methods and Articles of Manufacture. U.S. Patent 4,256,870, 17 March 1981. [Google Scholar]
- Hatanaka, M.; Nagashima, S. Platinum Complexes for Silicone Compositions. U.S. Patent 4,256,616, 17 March 1981. [Google Scholar]
- Steinmann, A.; Bebenroth, K.B.; Baumann, J.; Schmidt, G. One-Component, Curable Silicone Composition that is Stable in Storage. U.S. Patent 2017/0327713, 16 November 2017. [Google Scholar]
- Lukin, R.Y.; Emelyanov, D.A.; Kachmarzhik, A.D.; Sukhov, A.V.; Sinyashin, O.G.; Yakhvarov, D.G. Effect of Buchwald-type ligands on platinum catalyzed hydrosilylation of vinyl terminated polydimethylsiloxane. Mend. Commun. 2019, 29, 458–460. [Google Scholar] [CrossRef]
- Markó, I.E.; Stérin, S.; Buisine, O.; Berthon, G.; Michaud, G.; Tinant, B.; Declercq, J.P. Highly active and selective platinum(0)-carbene complexes. Efficient, catalytic hydrosilylation of functionalised olefins. Adv. Synth. Catal. 2004, 346, 1429–1434. [Google Scholar] [CrossRef]
- Markó, I.E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J.P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Hu, J.J.; Li, F.; Hor, T.S.A. Novel Pt(II) Mono- and Biscarbene Complexes: Synthesis, Structural Characterization and Application in Hydrosilylation Catalysis. Organometallics 2009, 28, 1212–1220. [Google Scholar] [CrossRef]
- De Bo, G.; Berthon-Gelloz, G.; Tinant, B.; Markó, I.E. Hydrosilylation of alkynes mediated by N-heterocyclic carbene platinum(O) complexes. Organometallics 2006, 25, 1881–1890. [Google Scholar] [CrossRef]
- Żak, P.; Bołt, M.; Kubicki, M.; Pietraszuk, C. Highly selective hydrosilylation of olefins and acetylenes by platinum (0) complexes bearing bulky N-heterocyclic carbene ligands. Dalton Trans. 2018, 47, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M. Chapter Two—Normal and Abnormal N-Heterocyclic Carbene Ligands: Similarities and Differences of Mesoionic C–Donor Complexes. Adv. Organomet. Chem. 2014, 62, 111–158. [Google Scholar]
- Lamoreaux, H.F. Organosilicon process using a chloroplatinic acid reaction product as the catalyst. U.S. Patent 3,220,972 A, 30 November 1965. [Google Scholar]
- Modic, F.J. Platinum Catalyst Composition for Hydrosilation Reactions. U.S. Patent 3,516,946, 23 June 1970. [Google Scholar]
- Ashby, B.A. Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes. U.S. Patent 3,159,601 A, 1 December 1964. [Google Scholar]
- Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawlu, P. Functionalisation and cross-linking of organosilicon polymers. In Hydrosilylation (Advances in Silicon Science); Springer: Dordrecht, The Netherlands, 2009; Volume 1, pp. 175–181. [Google Scholar]
- McAfee, R.C.; Adkins, J.; Miskowski, R.L. Platinum-styrene complexes which promote hydrosilation reactions. U.S. Patent 4,450,283 A, 22 May 1984. [Google Scholar]
- Li, J.; Peng, J.; Deng, Y.; Ma, C.; Zhang, G.; Bai, Y.; Lai, G. Synthesis of platinum acetylide complexes and their application in curing silicone rubber by hydrosilylation. Appl. Organometal. Chem. 2012, 26, 461. [Google Scholar] [CrossRef]
- Lewis, L.N.; Sumpter, C.A.; Stein, J. Hydrosilylation catalysts derived from cyclodextrin organometallic platinum inclusion compounds and their use in command-cure applications. J. Inorg. Organomet. Polym. 1996, 6, 123–144. [Google Scholar] [CrossRef]
- Ebenhoch, J.; Barthel, H.; Müller, J.; Reuscher, H.; Dauth, J.; Hierstetter, T. Die Anlagerung von Si-gebundenen Wasserstoff an aliphatische Kohlenstoff-Kohlenstoff-Mehrfachbindung fördernde Katalysatoren. DE Patent 19831073, 13 January 2000. [Google Scholar]
- Wörner, C.; Achenbach, F.; Ebenhoch, J. Hitzehärtbare einkomponentige additionsvernetzende Siliconmassen. EP Patent 1006147, 25 November 1999. [Google Scholar]
- Fujiki, H.; Myoshi, K.; Muramatsu, H. Hydrosilylation catalysts and silicone compositions using the same. EP Patent 0916697, 13 January 2000. [Google Scholar]
- Nakanishi, J.; Saruyama, T.; Togashi, A. Microparticle catalysts for hydrosilylation reactions and thermosetting silicone compositions containing said catalyst. EP Patent 0761761, 12 March 1997. [Google Scholar]
- Baba, K.; Hirai, K.; Homna, H. Extrudable silicone rubber composition and method of manufacturing articles extruded from silicone rubber. EP Patent 1201705, 2 May 2002. [Google Scholar]
- Köllnberger, A. Härtbare siliconzusammensetzungen. EP Patent 2050768, 22 April 2009. [Google Scholar]
- Achenbach, F.; Fehn, A.; Dietl, S. Curable organopolysiloxane composition. EP Patent 0994159, 19 April 2000. [Google Scholar]
- Henn, J.; Müller, J. Flächengebilde aus zumindest zwei teilen flexibler materialien. DE Patent 10202715, 12 December 2002. [Google Scholar]
- Jagadeesh, M.N.; Thiel, W.; Köhler, J.; Fehn, A. Hydrosilylation with bis(alkynyl)(1,5-cyclooctadiene) platinum catalysts: A density functional study of the initial activation. Organometallics. 2002, 21, 2076–2087. [Google Scholar] [CrossRef]
- Fehn, A. Vernetzbare polyorganosiloxanmassen. EP Patent 1672031, 21 June 2006. [Google Scholar]
- Dauth, J.; Wolferseder, J.; Deubzer, B. Triazenoxid-übergangsmetall-komplexe als hydrosilylierungskatalysatoren. EP Patent 0690067, 24 May 2000. [Google Scholar]
- Kashiwagi, T.; Makikawa, S.; Sutou, T.; Shiobara, T. Radiation curing silicone rubber composition, adhesive silicone elastomer film formed from same, semiconductor device using same, and method of producing semiconductor device. U.S. Patent 7241823, 10 July 2007. [Google Scholar]
- Lippert, T.; Dauth, J.; Deubzer, B.; Weis, J.; Wokaun, A. Photolysis of an arylalkyl-triazenido-platinum-IV complex. Radiat. Phys. Chem. 1996, 47, 889–897. [Google Scholar] [CrossRef]
- Fujiki, H.; Sakamoto, T. Photo-curable liquid silicone rubber compositions for templating mother molds. EP Patent 0832936, 18 December 2002. [Google Scholar]
- Boardman, L.D. (η5-Cyclopentadienyl)trialkylplatinum photohydrosilylation catalysts. Mechanism of active catalyst formation and preparation of a novel bis(silyl)platinum hydride. Organometallics 1992, 11, 4194–4201. [Google Scholar] [CrossRef]
- Delis, J.G.P.; Huggins, J.; Ötschmann, V.; Hermann, J.-W. Method of coating substrates. WO Patent 2010/010030, 28 January 2010. [Google Scholar]
- Boardman, L.D.; Thompson, D.S.; Leatherdale, C.A.; Ouderkirk, A.J. Method of making light emitting device with silicon-containing encapsulant. WO Patent 2006055456, 26 May 2006. [Google Scholar]
- Oxman J., D.; Larry , D.B. Hydrosilation reaction utilizing a (cyclopentadiene)(sigma-aliphatic) platinum complex and a free radical photoinitiator. U.S. Patent 6376569, 23 April 2002. [Google Scholar]
- Vekki, D.A.; de Skvortsov, N.K. Hydrosilylation of vinylsiloxanes with hydrosiloxanes in the presence of thermo- and photoactivated platinum(II) phosphine complexes. Russ. J. Gen. Chem. 2004, 74, 197–206. [Google Scholar] [CrossRef]
- Wagner, M.P. Reinforcing silicas and silicates. Rubber Chem. Technol. 1976, 49, 703–774. [Google Scholar] [CrossRef]
- Hofmann, R.J.; Vlatković, M.; Wiesbrock, F. Fifty years of hydrosilylation in polymer science: A review of current trends of low-cost transition-metal and metal-free catalysts, non-thermally triggered hydrosilylation reactions, and industrial applications. Polymers 2017, 9, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.; Lewis, L.N.; Gao, Y.; Scott, R.A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693–3703. [Google Scholar] [CrossRef]
- Sakaki, S.; Mizoe, N.; Musashi, Y.; Biswas, B.; Sugimoto, M. Is a Transition State Planar or Nonplanar in Oxidative Additions of C− H, Si− H, C− C, and Si− C σ-Bonds to Pt (PH3) 2? A Theoretical Study. J. Phys. Chem. A 1998, 102, 8027–8036. [Google Scholar] [CrossRef]
- Sakaki, S.; Mizoe, N.; Musashi, Y.; Sugimoto, M. Platinum-catalyzed hydrosilylation of ethylene. A theoretical study on the reaction mechanism involving cis–trans isomerization of PtH(SiH3)(PH3)2. J. Mol. Struct. THEOCHEM 1999, 461, 533–546. [Google Scholar] [CrossRef]
- Lewis, L.N.; Uriarte, R.J.; Lewis, N. Metal colloid morphology and catalytic activity: Further proof of the intermediacy of colloids in the platinum-catalyzed hydrosilylation reaction. J. Catal. 1991, 127, 67–74. [Google Scholar] [CrossRef]
- Galeandro-Diamant, T.; Zanota, M.-L.; Sayah, R.; Veyre, L.; Nikitine, C.; de Bellefon, C.; Marrot, S.; Meille, V.; Thieuleux, C. Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chem. Commun. 2015, 51, 16194–16196. [Google Scholar] [CrossRef]
- Liu, K.; Shen, X.; Bai, S.; Zhang, Z.C. Stable Discrete Pt1 (0) in Crown Ether with Ultra-High Hydrosilylation Activity. ChemCatChem 2020, 12, 267–272. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukin, R.Y.; Kuchkaev, A.M.; Sukhov, A.V.; Bekmukhamedov, G.E.; Yakhvarov, D.G. Platinum-Catalyzed Hydrosilylation in Polymer Chemistry. Polymers 2020, 12, 2174. https://doi.org/10.3390/polym12102174
Lukin RY, Kuchkaev AM, Sukhov AV, Bekmukhamedov GE, Yakhvarov DG. Platinum-Catalyzed Hydrosilylation in Polymer Chemistry. Polymers. 2020; 12(10):2174. https://doi.org/10.3390/polym12102174
Chicago/Turabian StyleLukin, Ruslan Yu., Aidar M. Kuchkaev, Aleksandr V. Sukhov, Giyjaz E. Bekmukhamedov, and Dmitry G. Yakhvarov. 2020. "Platinum-Catalyzed Hydrosilylation in Polymer Chemistry" Polymers 12, no. 10: 2174. https://doi.org/10.3390/polym12102174
APA StyleLukin, R. Y., Kuchkaev, A. M., Sukhov, A. V., Bekmukhamedov, G. E., & Yakhvarov, D. G. (2020). Platinum-Catalyzed Hydrosilylation in Polymer Chemistry. Polymers, 12(10), 2174. https://doi.org/10.3390/polym12102174