Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Milled Wood Lignin (MWL) Isolation and Purification
2.3. Determination and Structural Characterization of Bamboo Lignin
3. Results and Discussion
3.1. Composition Analysis of 1–6 Year(s) Old Bamboo
3.2. FT-IR Spectra
3.3. Molecular Weight Analysis
3.4. 13C NMR Spectra
3.5. 2D-HSQC NMR Spectra
3.6. Semiquantitative Estimations Based on 2D-HSQC Spectra
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Structural elucidation of inhomogeneous lignins from bamboo. Int. J. Biol. Macromol. 2015, 77, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Obataya, E.; Kitin, P.; Yamauchi, H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci. Technol. 2007, 41, 385–400. [Google Scholar] [CrossRef]
- Malanit, P.; Barbu, M.; Frühwald, A. Physical and mechanical properties of oriented strand lumber made from an Asian bamboo (Dendrocalamus asper Backer). Eur. J. Wood Wood Prod. 2011, 69, 27–36. [Google Scholar] [CrossRef]
- Maziyar, M.; Housnieh, Y.; Giuseppe, C.; Giuseppe, L.; Calvin, B.; Sui, M.; Atefeh, S.; Pooria, P. Safely dissolvable and healable active packaging films based on alginate and pectin. Polymers 2019, 11, 1594. [Google Scholar]
- Yang, H.; Shi, Z.; Xu, G.; Qin, Y.; Deng, J.; Yang, J. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour. Technol. 2018, 274, 261–266. [Google Scholar] [CrossRef]
- Donaldson, L. Microfibril Angle: Measurement, Variation and Relationships—A Review. IAWA J. 2008, 29, 345–386. [Google Scholar] [CrossRef]
- Wei, P.; Ma, J.; Jiang, Z.; Liu, R.; An, X.; Fei, B. Chemical constituent distribution within multilayered cell walls of moso bamboo fiber tested by confocal raman microscopy. Wood Fiber Sci. 2017, 49, 12–21. [Google Scholar]
- Sun, S.L.; Wen, J.L.; Ma, M.G.; Li, M.F.; Sun, R.C. Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. J. Agric. Food Chem. 2013, 61, 4226–4235. [Google Scholar] [CrossRef]
- Upton, B.; Kasko, A. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev. 2015, 116, 2275–2306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Tong, T.; Li, H.; Lu, H.; Ren, J.; Zhang, A.; Deng, X.; Chen, X.; Wu, A. Characterization of hemicelluloses from neolamarckia cadamba (Rubiaceae) during xylogenesis. Carbohydr. Polym. 2016, 156, 333–339. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Gerpen, J. Biodiesel processing and production. Fuel Proc. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Agnieszka, A.; Agnieszka, W.; Krzysztof, P.; Damian, J.; Krzysztof, P.; Marzena, G. The use of lignin as a microbial carrier in the co-digestion of cheese and wafer waste. Polymers 2019, 11, 2073. [Google Scholar]
- Douwe, S.; Coen, A.; Joren, K.; Erwin, W.; Peter, J. Efficient mild organosolv lignin extraction in a flow-through setup yielding lignin with high β-O-4 content. Polymers 2019, 11, 1913. [Google Scholar]
- Wang, B.; Sun, Y.C.; Sun, R.C. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: A review. J. Leather Sci. Eng. 2019, 1, 5–30. [Google Scholar] [CrossRef]
- Lan, W.; Lu, F.; Regner, M.; Zhu, Y.; Rencoret, J.; Ralph, S.; Zakai, U.; Morreel, K.; Boerjan, W.; Ralph, J. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 2015, 167. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xuan, L.; He, Y.; Wang, J.; Zhang, H.; Ying, Y.; Wu, A.; Bacic, A.; Zeng, W.; Song, L. Molecular mechanism of xylogenesis in moso bamboo (Phyllostachys edulis) shoots during Cold Storage. Polymers 2018, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Lybeer, B.; Koch, G.; Van Acker, J.; Goetghebeur, P. Lignification and cell wall thickening in nodes of phyllostachys viridiglaucescens and phyllostachys nigra. Ann. Bot. 2006, 97, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, J.; Ruiz, R.; Scarlata, C.; Sluiter, A.; Templeton, D. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung 2013, 67, 613–627. [Google Scholar] [CrossRef]
- Wen, J.L.; Xue, B.L.; Xu, F.; Sun, R.C. Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. BioEnergy Res. 2012, 5, 886–903. [Google Scholar] [CrossRef]
- Wang, K.; Wang, B.; Hu, R.; Zhao, X.; Li, H.; Zhou, G.; Song, L.; Wu, A. Characterization of hemicelluloses in Phyllostachys edulis (Moso bamboo) culm during xylogenesis. Carbohydr. Polym. 2019, 221, 127–136. [Google Scholar] [CrossRef]
- He, J.B.; Zhao, X.H.; Du, P.Z.; Zeng, W.; Beahan, C.; Wang, Y.Q.; Li, H.L.; Bacic, A.; Wu, A. KNAT7 positively regulates xylan biosynthesis by directly activating IRX9 expression in Arabidopsis: KNAT7 positively regulates xylan biosynthesis. J. Integr. Plant Biol. 2018, 60, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 2016, 57, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liese, W.; Weiner, G. Ageing of bamboo culms. A review. Wood Sci. Technol. 1996, 30, 77–89. [Google Scholar] [CrossRef]
- Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): Comparative characterization of the dissolved lignins with milled wood lignin. Chem. Eng. J. 2012, 179, 80–89. [Google Scholar] [CrossRef]
- Abdelkafi, F.; Houcine, A.; Rousseau, B.; Tessier, M.; Gharbi, R.; Fradet, A. Structural analysis of alfa grass (Stipa tenacissima L.) lignin obtained by acetic acid/formic acid delignification. Biomacromolecules 2011, 12, 3895–3902. [Google Scholar] [CrossRef]
- Gluseppe, C.; Aurelio, A.; Lorenzo, L. Comparative study of historical woods from XIX century by thermogravimetry coupled with FTIR spectroscopy. Cellulose 2019, 26, 8853–8865. [Google Scholar]
- Kai, D.; Tan, M.; Chee, P.L.; Chua, Y.; Yap, Y.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016, 18, 1175–1200. [Google Scholar] [CrossRef]
- Guerra, A.; Mendonça, R.; Ferraz, A.; Lu, F.; Ralph, J. Structural characterization of lignin during pinus taeda wood treatment with ceriporiopsis subvermispora. Appl. Environ. Microb. 2004, 70, 4073–4078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.L.; Xue, B.L.; Xu, F.; Sun, R.C.; Pinkert, A. Unmasking the structural features and property of lignin from bamboo. Ind. Crop. Prod. 2013, 42, 332–343. [Google Scholar] [CrossRef]
- Li, M.F.; Fan, Y.M.; Xu, F.; Sun, R.C. Characterization of extracted lignin of bamboo (Neosinocalamus affinis) pretreated with sodium Hydroxide/urea solution at low temperature. Bioresources 2010, 5, 1762–1778. [Google Scholar]
- Zhou, C.; Li, Q.; Chiang, V.; Lucia, L.; Griffis, D. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via Time-of-Flight secondary ion mass spectrometry. Anal. Chem. 2011, 83, 7020–7026. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Helms, G.; Gao, X.; Shulin, C. Quantification of wheat straw lignin structure by comprehensive NMR analysis. J. Agric. Food Chem. 2013, 61, 4226–4235. [Google Scholar] [CrossRef]
- Sun, X.-F.; Sun, R.; Fowler, P.; Baird, M. Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 2005, 53, 860–870. [Google Scholar] [CrossRef]
- Xiao, L.P.; Xu, F.; Sun, R.C. Chemical and structural characterization of lignins isolated from Caragana sinica. Fibers Polym. 2011, 12, 316–323. [Google Scholar] [CrossRef]
Age (Years) | Mw (g/mol) | Mn (g/mol) | Mw/Mn |
---|---|---|---|
1 | 4586 | 2327 | 1.97 |
2 | 4954 | 2329 | 2.12 |
3 | 5245 | 2477 | 2.12 |
4 | 5410 | 2570 | 2.11 |
5 | 5670 | 2584 | 2.19 |
6 | 5823 | 2484 | 2.34 |
Label | δC/δH (ppm) | δC/δH (ppm) | Assignments |
---|---|---|---|
B′β | 49.8/2.56 | ND | Cβ–Hβ in β-β tetrahydrofuran (B′) |
Cβ | 53.1/3.46 | ND | Cβ–Hβ in phenylcoumaran (C) |
Bβ | 53.5/3.07 | 53.5/3.07 | Cβ–Hβ in β-β (resinol) (B) |
Dβ | 59.8/2.75 | ND | Cβ–Hβ in spirodienones (D) |
OCH3 | 56.4/3.70 | 55.6/3.76 | C–H in methoxyls |
Aγ | 59.9/3.35 | 62.0/4.08 | Cγ–Hγ in β–O–4 substructures (A) |
A′γ | 63.0/4.36 | 63.0/3.8 | Cγ–Hγ in γ-acylated β–O–4 (A′) |
Cγ | 62.2/3.76 | 64.3/4.33 | Cγ–Hγ in phenylcoumaran (C) |
Iγ | 61.2/4.09 | 64.1/4.66 | Cγ–Hγ in cinnamyl alcohol end-groups (I) |
I′γ | 64.0/4.80 | 64.2/4.82 | Cγ–Hγ in acylated cinnamyl alcohol (I′) |
Bγ | 71.2/3.82 | 71.7/3.84 | Cγ–Hγ in β-β resinol (B) |
Aα | 71.8/4.86 | 73.8/5.93 | Cα–Hα in β–O–4 unit (A) (Erythro) |
Aα | 71.8/4.86 | 73.8/5.93 | Cα–Hα in β–O–4 unit (A) (Thero) |
Aβ(G) | 83.4/4.38 | 76.6/5.07 | Cα–Hα in β–O–4 linked to G(A) |
Bα | 84.8/4.66 | 85.6/4.70 | Cα–Hα in β-β resinol (B) |
B′α | 83.2/4.94 | ND | Cα–Hα in β-β (B′, tetrahydrofuran) |
A′′β | 82.8/5.23 | ND | Cβ–Hβ in β–O–4 substructures (A) |
A′β(G) | 80.8/4.52 | ND | Cβ–Hβ in acylated β–O–4 linked to G (A) |
Aβ(S) | 85.8/4.12 | 79.8/4.63 | Cβ–Hβ in β–O–4 linked to S (A, Erythro) |
Aβ(S) | 85.8/4.12 | 79.8/4.63 | Cβ–Hβ in β–O–4 linked to S (A, Thero) |
Dα | 81.0/5.10 | ND | Cα–Hα in spirodienones (D) |
D′α | 79.4/4.10 | ND | C′α–H′α in spirodienones (D) |
Eα | 79.6/5.60 | ND | Cα–Hα in α,β-diaryl ethers (E) |
Cα | 86.8/5.45 | 87.1/5.49 | Cα–Hα in phenylcoumaran (C) |
T′2,6 | 103.9/7.34 | ND | C′2,6–H′2,6 in tricin (T) |
T6 | 98.9/6.23 | ND | C2,6–H2,6 in tricin (T) |
T8 | 94.2/6.60 | ND | C8–H8 in tricin (T) |
T3 | 106.2/7.07 | ND | C3–H3 in tricin (T) |
S2,6 | 103.9/6.70 | 103.5/6.66 | C2,6–H2,6 in syringyl units (S) |
S′2,6 | 106.3/7.32 | 105.4/7.37 | C2,6–H2,6 in oxidized S units (S′) |
G2 | 110.8/6.97 | 111.0/7.07 | C2–H2 in guaiacyl units (G) |
G5 | 114.5/6.70 | 116.5/7.00 | C5–H5 in guaiacyl units (G) |
G5e | 115.1/6.95 | ND | C5–H5 in etherified guaiacyl units (G) |
G6 | 119.0/6.78 | 118.9/6.90 | C6–H6 in guaiacyl units (G) |
Jβ | 126.1/6.76 | ND | Cβ–Hβ in cinnamyl aldehyde end-groups (J) |
H2,6 | 127.7/7.17 | 127.8/7.34 | C2,6–H2,6 in H units (H) |
PCE3,5 | 115.6/6.77 | 122.1/7.14 | C3,5–H3,5 in p-coumarate (p-CE) |
PCE2,6 | 130.2/7.48 | 129.3/7.68 | C2,6–H2,6 in p-coumarate (p-CE) |
PCE7 | 144.8/7.51 | 143.5/7.52 | C7–H7 in p-coumarate (p-CE) |
PCE8 | 113.7/6.24 | 117.4/6.45 | C8–H8 in p-coumarate (p-CE) |
FA2 | 110.7/7.35 | ND | C2–H2 in ferulate (p-FA) |
FA6 | 123.1/7.20 | ND | C6–H6 in ferulate (p-FA) |
FA7 | 144.8/7.51 | 143.5/7.52 | C7–H7 in ferulate (p-FA) |
Jα | 153.4/7.59 | ND | Cα–Hα in cinnamyl aldehyde end-groups (J) |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
S/G ratio | 1.94 | 1.69 | 2.25 | 2.48 | 3.02 | 2.92 |
β-O-4 ether units (%) | 84.13 | 86.85 | 89.85 | 92.04 | 92.95 | 89.15 |
Resinol substructures(B) (%) | 4.37 | 4.13 | 2.54 | 1.81 | 1.15 | 2.02 |
Phenylcoumaran(C) (%) | 1.19 | 1.45 | 0.57 | 0.39 | 0.28 | 0.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Huang, J.; Wang, K.; Wang, B.; Sun, S.; Lin, X.; Song, L.; Wu, A.; Li, H. Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers 2020, 12, 187. https://doi.org/10.3390/polym12010187
Zhu Y, Huang J, Wang K, Wang B, Sun S, Lin X, Song L, Wu A, Li H. Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers. 2020; 12(1):187. https://doi.org/10.3390/polym12010187
Chicago/Turabian StyleZhu, Yikui, Jiawei Huang, Kaili Wang, Bo Wang, Shaolong Sun, Xinchun Lin, Lili Song, Aimin Wu, and Huiling Li. 2020. "Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages" Polymers 12, no. 1: 187. https://doi.org/10.3390/polym12010187
APA StyleZhu, Y., Huang, J., Wang, K., Wang, B., Sun, S., Lin, X., Song, L., Wu, A., & Li, H. (2020). Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers, 12(1), 187. https://doi.org/10.3390/polym12010187