Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Microgels
2.3. Quaternization of Microgels
2.4. Characterization Methods
2.5. Evaluation of the Antimicrobial Properties
3. Results and Discussion
3.1. P(NIPAM-co-DMAEMA) Microgels Preparation and Quaternization
3.2. Effect of DMAEMA Content and Its Quaternization in the Thermal Properties of Microgels
3.3. Effect of DMAEMA in the Viscoelastic Properties of Microgel Dispersions: Fractal Analysis
3.4. Determination of Microgels Size (Hydrodynamic Diameter) and Surface Charge: Effect of DMAEMA Content and Quaternization
3.5. Evaluation of Unquaternized and Quaternized (QMe, QBu) Microgels Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Gao, Y.; Serpe, M.J. Electrically triggered small molecule release from poly(n-isopropylacrylamide-co-acrylic acid) microgel-modified electrodes. ACS Appl. Mater. Interfaces 2018, 10, 13124–13129. [Google Scholar] [CrossRef]
- Thorne, J.B.; Vine, G.J.; Snowden, M.J. Microgel applications and commercial considerations. Colloid Polym. Sci. 2011, 289, 625. [Google Scholar] [CrossRef]
- Muratalin, M.; Luckham, P.F.; Esimova, A.; Aidarova, S.; Mutaliyeva, B.; Madybekova, G.; Sharipova, A.; Issayeva, A. Study of n-isopropylacrylamide-based microgel particles as a potential drug delivery agents. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 8–17. [Google Scholar] [CrossRef]
- Madrigal, J.L.; Sharma, S.N.; Campbell, K.T.; Stilhano, R.S.; Gijsbers, R.; Silva, E.A. Microgels produced using microfluidic on-chip polymer blending for controlled released of vegf encoding lentivectors. Acta Biomater. 2018, 69, 265–276. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Z.; Li, N.; Wang, X.; Zhou, F.; Liu, W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. Acs Appl. Mater. Interfaces 2014, 6, 20452–20463. [Google Scholar] [CrossRef]
- Joshi, A.; Nandi, S.; Chester, D.; Brown, A.C.; Muller, M. Study of poly(n-isopropylacrylamide-co-acrylic acid) (pnipam) microgel particle induced deformations of tissue-mimicking phantom by ultrasound stimulation. Langmuir 2018, 34, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Zhang, Y.; Guan, Y. In situ gelation of p(nipam-hema) microgel dispersion and its applications as injecTable 3d cell scaffold. Biomacromolecules 2009, 10, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Gelissen, A.P.H.; Schmid, A.J.; Plamper, F.A.; Pergushov, D.V.; Richtering, W. Quaternized microgels as soft templates for polyelectrolyte layer-by-layer assemblies. Polymer 2014, 55, 1991–1999. [Google Scholar] [CrossRef]
- Jia, S.; Tang, Z.; Guan, Y.; Zhang, Y. Order-disorder transition in doped microgel colloidal crystals and its application for optical sensing. ACS Appl. Mater. Interfaces 2018, 10, 14254–14258. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; South, A.B.; Hu, X.; Verdes, C.; Kim, J.D.; Lyon, L.A. Gold nanoparticles reinforce self-healing microgel multilayers. Colloid Polym. Sci. 2011, 289, 583–590. [Google Scholar] [CrossRef]
- Krüger, A.J.D.; Köhler, J.; Cichosz, S.; Rose, J.C.; Gehlen, D.B.; Haraszti, T.; Möller, M.; De Laporte, L. A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels. Chem. Commun. 2018, 54, 6943–6946. [Google Scholar] [CrossRef]
- Díaz, J.E.; Barrero, A.; Márquez, M.; Fernández-Nieves, A.; Loscertales, I.G. Absorption properties of microgel-pvp composite nanofibers made by electrospinning. Macromol. Rapid Commun. 2010, 31, 183–189. [Google Scholar]
- Leon, A.M.; Aguilera, J.M.; Park, D.J. Mechanical, rheological and structural properties of fiber-containing microgels based on whey protein and alginate. Carbohydr. Polym. 2019, 207, 571–579. [Google Scholar] [CrossRef]
- Marques, S.C.S.; Soares, P.I.P.; Echeverria, C.; Godinho, M.H.; Borges, J.P. Confinement of thermoresponsive microgels into fibres: Via colloidal electrospinning: Experimental and statistical analysis. RSC Adv. 2016, 6, 76370–76380. [Google Scholar] [CrossRef]
- Faria, J.; Echeverria, C.; Borges, J.P.; Godinho, M.H.; Soares, P.I.P. Towards the development of multifunctional hybrid fibrillary gels: Production and optimization by colloidal electrospinning. RSC Adv. 2017, 7, 48972–48979. [Google Scholar] [CrossRef]
- World Health Organization. Antibiotic Resistance—Fact Sheet. 2015. Available online: Http://who.Int/mediacentre/factsheets/antibiotic-resistance/en/ (accessed on 5 February 2018).
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Timofeeva, L.; Kleshcheva, N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011, 89, 475–492. [Google Scholar] [CrossRef]
- Takahashi, H.; Caputo, G.A.; Vemparala, S.; Kuroda, K. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjug. Chem. 2017, 28, 1340–1350. [Google Scholar] [CrossRef]
- Tejero, R.; Gutiérrez, B.; López, D.; López-Fabal, F.; Gómez-Garcés, J.L.; Fernández-García, M. Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems. Acta Biomater. 2015, 25, 86–96. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Nordström, R.; Nyström, L.; Ilyas, H.; Atreya, H.S.; Borro, B.C.; Bhunia, A.; Malmsten, M. Microgels as carriers of antimicrobial peptides – effects of peptide pegylation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 565, 8–15. [Google Scholar] [CrossRef]
- Nyström, L.; Strömstedt, A.A.; Schmidtchen, A.; Malmsten, M. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules 2018, 19, 3456–3466. [Google Scholar] [CrossRef] [PubMed]
- Nordström, R.; Nyström, L.; Andrén, O.C.J.; Malkoch, M.; Umerska, A.; Davoudi, M.; Schmidtchen, A.; Malmsten, M. Membrane interactions of microgels as carriers of antimicrobial peptides. J. Colloid Interface Sci. 2018, 513, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Bysell, H.; Hansson, P.; Schmidtchen, A.; Malmsten, M. Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels. J. Phys. Chem. B 2010, 114, 1307–1313. [Google Scholar] [CrossRef]
- Bysell, H.; Månsson, R.; Malmsten, M. Effects of peptide cyclization on the interaction with oppositely charged microgels. Colloids Surf. A Physicochem. Eng. Asp. 2011, 391, 62–68. [Google Scholar] [CrossRef]
- Månsson, R.; Bysell, H.; Hansson, P.; Schmidtchen, A.; Malmsten, M. Effects of peptide secondary structure on the interaction with oppositely charged microgels. Biomacromolecules 2011, 12, 419–424. [Google Scholar] [CrossRef]
- Parilti, R.; Caprasse, J.; Riva, R.; Alexandre, M.; Vandegaart, H.; Bebrone, C.; Dupont-Gillain, C.; Howdle, S.M.; Jérôme, C. Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. J. Colloid Interface Sci. 2018, 532, 112–117. [Google Scholar] [CrossRef]
- Zha, L.; Hu, J.; Wang, C.; Fu, S.; Luo, M. The effect of electrolyte on the colloidal properties of poly(n-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes. Colloid Polym. Sci. 2002, 280, 1116–1121. [Google Scholar] [CrossRef]
- Zha, L.; Hu, J.; Wang, C.; Fu, S.; Elaissari, A.; Zhang, Y. Preparation and characterization of poly (n-isopropylacrylamide-co-dimethylaminoethyl methacrylate) microgel latexes. Colloid Polym. Sci. 2002, 280, 1–6. [Google Scholar] [CrossRef]
- Alvarez-Paino, M.; Bonilla, P.; Cuervo-Rodríguez, R.; López-Fabal, F.; Gómez-Garcés, J.L.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial surfaces obtained from blends of block copolymers synthesized by simultaneous atrp and click chemistry reactions. Eur. Polym. J. 2017, 93, 53–62. [Google Scholar] [CrossRef]
- Alvarez-Paino, M.; Juan-Rodríguez, R.; Cuervo-Rodríguez, R.; Tejero, R.; López, D.; López-Fabal, F.; Gómez-Garcés, J.L.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers. Colloids Surf. B Biointerfaces 2016, 140, 94–103. [Google Scholar] [CrossRef]
- Ribeiro, C.A.; Martins, M.V.S.; Bressiani, A.H.; Bressiani, J.C.; Leyva, M.E.; de Queiroz, A.A.A. Electrochemical preparation and characterization of pnipam-hap scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2017, 81, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Wenyong, L.; Guangsheng, Z.; YueJun, L. Microporous pdmaema-based stimuli-responsive hydrogel and its application in drug release. J. Appl. Polym. Sci. 2017, 134, 45326. [Google Scholar]
- Sousa, R.G.; Magalhães, W.F.; Freitas, R.F.S. Glass transition and thermal stability of poly(n-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polym. Degrad. Stab. 1998, 61, 275–281. [Google Scholar] [CrossRef]
- Ghosh, R.S.; Kamal, B.; Sunirmal, P.; Ankur, G.; Giridhar, M.; Priyadarsi, D. Synthesis, characterization and thermal degradation of dual temperature- and ph-sensitive raft-made copolymers of n,n-(dimethylamino)ethyl methacrylate and methyl methacrylate. Polym. Int. 2013, 62, 463–473. [Google Scholar]
- Liao, W.; Zhang, Y.; Guan, Y.; Zhu, X.X. Fractal structures of the hydrogels formed in situ from poly(n-isopropylacrylamide) microgel dispersions. Langmuir 2012, 28, 10873–10880. [Google Scholar] [CrossRef]
- Echeverria, C.; López, D.; Mijangos, C. Ucst responsive microgels of poly(acrylamide-acrylic acid) copolymers: Structure and viscoelastic properties. Macromolecules 2009, 42, 9118–9123. [Google Scholar] [CrossRef]
- Echeverria, C.; Peppas, N.A.; Mijangos, C. Novel strategy for the determination of ucst-like microgels network structure: Effect on swelling behavior and rheology. Soft Matter 2012, 8, 337–346. [Google Scholar] [CrossRef]
- Echeverria, C.; Mijangos, C. Ucst-like hybrid paam-aa/fe3o4 microgels. Effect of fe3o4 nanoparticles on morphology, thermosensitivity and elasticity. Langmuir 2011, 27, 8027–8035. [Google Scholar] [CrossRef]
- Gisler, T.; Ball, R.C.; Weitz, D.A. Strain hardening of fractal colloidal gels. Phys. Rev. Lett. 1999, 82, 1064. [Google Scholar] [CrossRef]
- Shih, W.-H.; Shih, W.Y.; Kim, S.-I.; Liu, J.; Aksay, I.A. Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 1990, 42, 4772. [Google Scholar] [CrossRef]
- Wu, H.; Morbidelli, M. A model relating structure of colloidal gels to their elastic properties. Langmuir 2001, 17, 1030–1036. [Google Scholar] [CrossRef]
- Kolb, M.; Botet, R.; Jullien, R. Scaling of kinetically growing clusters. Phys. Rev. Lett. 1983, 51, 1123. [Google Scholar] [CrossRef]
- Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 1983, 51, 1119. [Google Scholar] [CrossRef]
- Witten, T.A.; Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400. [Google Scholar] [CrossRef]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; López-Fabal, F.; Gómez-Garcés, J.L.; Heuts, J.P.A.; Fernández-García, M. Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized dmaema. Biomacromolecules 2015, 16, 295–303. [Google Scholar] [CrossRef]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; López-Fabal, F.; Gómez-Garcés, J.L.; Heuts, J.P.A.; Fernández-García, M. Functional surfaces obtained from emulsion polymerization using antimicrobial glycosylated block copolymers as surfactants. Polym. Chem. 2015, 6, 6171–6181. [Google Scholar] [CrossRef]
Samples | Slopes from Figure 4 | Shih et al. Model | Wu and Morbidelli Model | ||||
---|---|---|---|---|---|---|---|
A | B | Df | x | Df | α | Regime | |
PNIPAM | 1.89 | −0.56 | 1.49 | <0 | 1.49 | 0.43 | Transition (strong) |
P(NIPAM-co-DMAEMA15) | 1.85 | 0.28 | <0 | --- | 1.72 | 0.58 | Transition (weak) |
P(NIPAM-co-DMAEMA20) | 1.94 | 0.72 | 1.16 | <0 | 2.24 | 0.85 | Weak-link |
P(NIPAM-co-DMAEMA20-QMe) | 1.89 | 0.42 | 0.6 | 1.5 | 2.13 | 0.80 | Weak-link |
Samples | Dh20 (nm) (20 °C) | Dh40 (nm) (40 °C) | RSI (D20/D40)3 |
---|---|---|---|
PNIPAM | 1230 ± 14 | 905 ± 25 | 2.51 |
P(NIPAM-co-DMAEMA15) | 680 ± 109 | 433 ± 58 | 3.87 |
P(NIPAM-co-DMAEMA15-QMe) | 526 ± 89 | 504 ± 86 | 1.14 |
P(NIPAM-co-DMAEMA15-QBu) | 504 ± 37 | 327 ± 24 | 3.66 |
P(NIPAM-co-DMAEMA20) | 649 ± 66 | 319 ± 44 | 8.42 |
P(NIPAM-co-DMAEMA20-QMe) | 499 ± 151 | 375 ± 174 | 2.35 |
P(NIPAM-co-DMAEMA20-QBu) | 488 ± 66 | 290 ± 38 | 4.76 |
P(NIPAM-co-DMAEMA25) | 355 ± 24 | 155 ± 23 | 10.10 |
P(NIPAM-co-DMAEMA25-QMe) | 281 ± 76 | 176 ± 9 | 4.06 |
P(NIPAM-co-DMAEMA25-QBu) | 427 ± 135 | 250 ± 49 | 4.98 |
Samples | MIC (mg/mL) | ||
---|---|---|---|
S. aureus | S. epidermidis | C. parapsilosis | |
PNIPAM | >10 | >10 | >10 |
P(NIPAM-co-DMAEMA15) | 5 | 5 | 5 |
P(NIPAM-co-DMAEMA20) | 5 | 5 | 5 |
P(NIPAM-co-DMAEMA25) | 5 | 5 | 5 |
P(NIPAM-co-DMAEMA15-QMe) | 5 | 5 | 5 |
P(NIPAM-co-DMAEMA20-QMe) | 5 | 5 | 5 |
P(NIPAM-co-DMAEMA25-QMe) | 5 | 2.5 | 5 |
P(NIPAM-co-DMAEMA15-QBu) | >10 | >10 | >10 |
P(NIPAM-co-DMAEMA20-QBu) | >10 | >10 | >10 |
P(NIPAM-co-DMAEMA25-QBu) | >10 | >10 | >10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverría, C.; Aragón-Gutiérrez, A.; Fernández-García, M.; Muñoz-Bonilla, A.; López, D. Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers 2019, 11, 606. https://doi.org/10.3390/polym11040606
Echeverría C, Aragón-Gutiérrez A, Fernández-García M, Muñoz-Bonilla A, López D. Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers. 2019; 11(4):606. https://doi.org/10.3390/polym11040606
Chicago/Turabian StyleEcheverría, Coro, Alejandro Aragón-Gutiérrez, Marta Fernández-García, Alexandra Muñoz-Bonilla, and Daniel López. 2019. "Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties" Polymers 11, no. 4: 606. https://doi.org/10.3390/polym11040606
APA StyleEcheverría, C., Aragón-Gutiérrez, A., Fernández-García, M., Muñoz-Bonilla, A., & López, D. (2019). Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers, 11(4), 606. https://doi.org/10.3390/polym11040606