Transcrystallization of Isotactic Polypropylene/Bacterial Cellulose Hamburger Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of iPP/BC Hamburger Composites
2.3. Characterization of iPP/BC Composites
2.3.1. Polarizing Microscope (POM)
2.3.2. Differential Scanning Calorimeter (DSC) Testing
2.3.3. Mechanical Properties
2.3.4. Scanning Electron Microscope (SEM)
2.3.5. FT-IR Analysis
3. Results and Discussion
3.1. Transcrystallization of the iPP/BC Hamburger Composites
3.2. DSC Testing of the iPP/BC Hamburger Composites
3.3. Mechanical Properties of the iPP/BC Hamburger Composites
3.4. SEM Photographs on the Interface of the iPP/BC Hamburger Composite
3.5. FT-IR of the iPP/BC Hamburger Composite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bao, J.B.; Junior, A.N.; Weng, G.S.; Wang, J.; Fang, Y.W.; Hu, G.H. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2016, 111, 63–73. [Google Scholar] [CrossRef]
- Pechyen, C.; Ummartyotin, S. Development of isotactic polypropylene and stearic acid-modified calcium carbonate composite: A promising material for microwavable packaging. Polym. Bull. 2017, 74, 431–444. [Google Scholar] [CrossRef]
- Yasin, S.; Sun, D.; Memon, H.; Zhu, F.; Jian, H.; Bin, Y.; Mingbo, M.; Hussain, M. Optimization of mechanical and thermal properties of iPP and LMPP blend fibres by surface response methodology. Polymers 2018, 10, 1135. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, L.; Bai, H.; Ke, W.; Hua, D.; Feng, C.; Qin, Z.; Qiang, F. Synergistic effects of β-modification and impact polypropylene copolymer on brittle-ductile transition of polypropylene random copolymer. J. Appl. Polym. Sci. 2013, 129, 3613–3622. [Google Scholar] [CrossRef]
- Alian, A.R.; Meguid, S.A. Large-scale atomistic simulations of CNT-reinforced thermoplastic polymers. Compos. Struct. 2018, 191, 221–230. [Google Scholar] [CrossRef]
- Kashani Rahimi, S.; Otaigbe, J.U. Natural cellulose fiber-reinforced polyamide 6 thermoplastic composites prepared via in situ anionic ring-opening polymerization. Polym. Compos. 2019, 40, 1104–1116. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.; Bao, Z.; Lang, X.; Zhou, Z.; Li, Y.; Feng, C.; Chen, X. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology. Carbohydr. Polym. 2018, 189, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.G.; Yu, T.; Fernando, D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012, 78, 131–143. [Google Scholar] [CrossRef]
- Mi, D.; La, R.; Chen, W.; Zhang, J. Different kinds of transcrystallinity developed from glass fiber/isotactic polypropylene/β-nucleation agents composite by microinjection molding. Polym. Adv. Technol. 2016, 27, 1220–1227. [Google Scholar] [CrossRef]
- Zhang, S.; Minus, M.L.; Zhu, L.; Wong, C.P.; Kumar, S. Polymer transcrystallinity induced by carbon nanotubes. Polymer 2008, 49, 1356–1364. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.R. Transcrystallization of polypropylene composites: Nucleating ability of fibres. Polymer 1999, 40, 289–298. [Google Scholar] [CrossRef]
- Quan, H.; Li, Z.M.; Yang, M.B.; Huang, R. On transcrystallinity in semi-transcrystallization polymer composites. Compos. Sci. Technol. 2005, 65, 999–1021. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E.; Baillie, C.A.; Matthews, F.L. A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos. Part A-Appl. Sci. Manuf. 2001, 32, 525–543. [Google Scholar] [CrossRef]
- Gray, D.G. Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 2008, 15, 297–301. [Google Scholar] [CrossRef]
- Wang, B.; Qi, G.X.; Huang, C.; Yang, X.Y.; Zhang, H.R.; Luo, J.; Chen, X.F.; Xiong, L.; Chen, X.D. Preparation of bacterial cellulose/inorganic gel of bentonite composite by in situ modification. Indian J. Microbiol. 2016, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alonso, E.; Faria, M.; Mohammadkazemi, F.; Resnik, M.; Ferreira, A.; Cordeiro, N. Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions. Carbohydr. Polym. 2018, 183, 254. [Google Scholar] [CrossRef]
- Asgher, M.; Ahmad, Z.; Iqbal, H.M. Bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites with novel characteristics. Carbohydr. Polym. 2017, 161, 244–252. [Google Scholar] [CrossRef]
- Alireza, A.; Somayeh, S.; Taghi, T.; Alireza, S.; Masood, G. Bacterial cellulose/silica nanocomposites: Preparation and characterization. Carbohydr. Polym. 2012, 90, 413–418. [Google Scholar]
- Wang, B.; Yang, D.; Zhang, H.R.; Huang, C.; Xiong, L.; Luo, J.; Chen, X.D. Preparation of esterified bacterial cellulose for improved mechanical properties and the microstructure of isotactic polypropylene/bacterial cellulose composites. Polymers 2016, 8, 129. [Google Scholar] [CrossRef]
- Wang, B.; Lin, F.H.; Li, X.Y.; Zhang, Z.W.; Xue, X.R.; Liu, S.X.; Ji, X.R.; Yu, Q.; Yuan, Z.Q.; Chen, X.D.; et al. Isothermal crystallization and rheology properties of isotactic polypropylene/bacterial cellulose Composite. Polymers 2018, 10, 1284. [Google Scholar] [CrossRef]
- Bing, N.; Min, G.; Yang, J.; Hong, T.; Qin, Z.; Qiang, F. Crystal morphology and transcrystallization mechanism of isotactic polypropylene induced by fibres: Interface nucleation versus bulk nucleation. Polym. Int. 2010, 55, 441–448. [Google Scholar]
- Hermida, É.B.; Mega, V.I. Transcrystallization kinetics at the poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hemp fibre interface. Compos. Part A-Appl. Sci. Manuf. 2007, 38, 1387–1394. [Google Scholar] [CrossRef]
- Jian, K.; Wang, B.; Peng, H.; Chen, J.; Cao, Y.; Li, H.; Feng, Y.; Ming, X. Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym. Bull. 2014, 71, 563–579. [Google Scholar]
- Bo, W.; Zhang, H.R.; Chao, H.; Lian, X.; Chen, X.D. Mechanical and rheological properties of isotactic polypropylene/bacterial cellulose composites. Polym. Korea 2017, 41, 460–464. [Google Scholar]
- Chung, Y.C.; Lee, S.B.; Chun, B.C. The effect of the diphenylamino side group on the reduction of the molecular interaction between polyurethane copolymer chains. J. Appl. Polym. Sci. 2013, 128, 3446–3454. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Lin, F.-h.; Li, X.-y.; Ji, X.-r.; Liu, S.-x.; Han, X.-j.; Yuan, Z.-q.; Luo, J. Transcrystallization of Isotactic Polypropylene/Bacterial Cellulose Hamburger Composite. Polymers 2019, 11, 508. https://doi.org/10.3390/polym11030508
Wang B, Lin F-h, Li X-y, Ji X-r, Liu S-x, Han X-j, Yuan Z-q, Luo J. Transcrystallization of Isotactic Polypropylene/Bacterial Cellulose Hamburger Composite. Polymers. 2019; 11(3):508. https://doi.org/10.3390/polym11030508
Chicago/Turabian StyleWang, Bo, Fu-hua Lin, Xiang-yang Li, Xu-ran Ji, Si-xiao Liu, Xiao-jing Han, Zheng-qiu Yuan, and Jun Luo. 2019. "Transcrystallization of Isotactic Polypropylene/Bacterial Cellulose Hamburger Composite" Polymers 11, no. 3: 508. https://doi.org/10.3390/polym11030508
APA StyleWang, B., Lin, F.-h., Li, X.-y., Ji, X.-r., Liu, S.-x., Han, X.-j., Yuan, Z.-q., & Luo, J. (2019). Transcrystallization of Isotactic Polypropylene/Bacterial Cellulose Hamburger Composite. Polymers, 11(3), 508. https://doi.org/10.3390/polym11030508