Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Regenerated ASF
2.3. Synthesis of ASF/PNIPAAm Composite Hydrogels
2.4. Wide-Angle X-ray Diffraction (WAXD)
2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
2.6. Thermogravimetric Analysis (TGA)
2.7. Differential Scanning Calorimetry (DSC)
2.8. Swelling Ratio Measurement
2.9. Mechanical Properties
2.10. Morphology of ASF/PNIPAAm Composite Hydrogels
3. Results and Disscussion
3.1. Preparation of ASF/PNIPAAm Composite Hydrogels
3.2. Structure Characteristics
3.3. Thermodynamic Properties of ASF/PNIPAAm Hydrogels
3.4. Thermosensitivity of ASF/PNIPAAm Hydrogels
3.5. Compression Mechanical Properties of ASF/PNIPAAm Hydrogels
3.6. Morphology of ASF/PNIPAAm Hydrogels
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chen, Y.S.; Tsou, P.C.; Lo, J.M. Poly (N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials 2013, 34, 7328–7334. [Google Scholar] [CrossRef]
- Nagase, K.; Yamato, M.; Kanazawa, H. Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2018, 153, 27–48. [Google Scholar] [CrossRef]
- Hu, X.; Cebe, P.; Weiss, A.S.; Omenetto, F.; Kaplan, D.L. Protein-based composite materials. Mater. Today 2012, 15, 208–215. [Google Scholar] [CrossRef]
- Zhang, Y.Q. Natural silk fibroin as a support for enzyme immobilization. Biotechnol. Adv. 1998, 16, 961–971. [Google Scholar] [CrossRef]
- Wang, P.; Qi, C.; Yu, Y. Covalent Immobilization of Catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking. Appl. Biochem. Biotech. 2015, 177, 472–485. [Google Scholar] [CrossRef]
- Lee, K.H.; Chang, S.K.; Baek, D.H. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fiber Polym. 2005, 6, 181–185. [Google Scholar] [CrossRef]
- Wu, M.H.; Zhu, L.; Zhou, Z.Z. Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging. J. Nanopart. 2013, 1–5. [Google Scholar] [CrossRef]
- Singh, Y.P.; Bhardwaj, N.; Mandal, B.B. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. Acs App. Mater. Inter. 2016, 8, 21236–21249. [Google Scholar] [CrossRef]
- Yucel, T.; Cebe, P.; Kaplan, D.L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 2009, 97, 2044–2050. [Google Scholar] [CrossRef]
- Kasoju, N.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthc. Mater. 2012, 1, 393–412. [Google Scholar] [CrossRef]
- Yan, L.P.; Oliveira, J.M.; Oliveira, A.L. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012, 8, 289–301. [Google Scholar] [CrossRef]
- Farokhi, M.; Mottaghitalab, F.; Samani, S. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 2018, 36, 68–91. [Google Scholar] [CrossRef]
- Bessa, P.C.; Balmayor, E.R.; Hartinger, J. Silk fibroin microparticles as carriers for delivery of human recombinant bone morphogenetic protein 2: In vitro an in vivo bioactivity. J. Tissue Eng. Regen. M. 2010, 4, 349–355. [Google Scholar] [CrossRef]
- Germershaus, O.; Werner, V.; Kutscher, M. Deciphering the mechanism of protein interaction with silk fibroin for drug delivery systems. Biomaterials 2014, 35, 3427–3434. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Dai, F. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J. Transl. Med. 2012, 10, 117. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Zhang, Q. Aqueous-based electrospinning of regenerated antheraea pernyi silk fibroin. Fiber. Polym. 2016, 17, 1421–1427. [Google Scholar] [CrossRef]
- Silva, S.S.; Kundu, B.; Lu, S.; Reis, R.L.; Kundu, S.C. Chinese oak tasar silkworm antheraea pernyi silk proteins: Current strategies and future perspectives for biomedical applications. Macromol. Biosci. 2018, 1800252. [Google Scholar] [CrossRef]
- Malay, A.D.; Sato, R.; Yazawa, K. Relationships between physical properties and sequence in silkworm silks. Sci. Rep.-UK. 2016, 6, 27573. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Ye, D. Fabrication and characterization of electrospun PCL/antheraea pernyi silk fibroin nanofibrous scaffolds. Polym. Eng. Sci. 2017, 57, 206–213. [Google Scholar] [CrossRef]
- Lee, K.G.; Kweon, H.; Yeo, J.H. Characterization of tyrosine-rich antheraea pernyi silk fibroin hydrolysate. Int. J. Bio. Macromol. 2011, 48, 223–226. [Google Scholar] [CrossRef]
- Sezutsu, H.; Yukuhiro, K. Dynamic rearrangement within the antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J. Mol. Evol. 2000, 51, 329–338. [Google Scholar] [CrossRef]
- Rudzinski, W.E.; Dave, A.M.; Vaishnav, U.H.; Kumbar, S.G. Hydrogels as controlled release devices in agriculture. Des. Monomers and Polym. 2002, 5, 39–65. [Google Scholar] [CrossRef]
- Li, T.H.; Tian, C.Y.; Zang, L.S. Multiparasitism with Trichogramma dendrolimi, on egg of Chinese oak silkworm, antheraea pernyi, enhances emergence of Trichogramma ostriniae. J. Pest Sci. 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Minoura, N.; Aiba, S.M.; Gotoh, Y. Attachment and growth of fibroblast cells on silk fibroin. Biochem. Bioph. Res. Co. 1995, 208, 511–516. [Google Scholar] [CrossRef]
- Tian, H.; Lin, L.; Chen, J. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J. Control Release 2011, 155, 47–53. [Google Scholar] [CrossRef]
- Kar, S.; Talukdar, S.; Pal, S. Silk gland fibroin from indian muga silkworm antheraea assama, as potential biomaterial. Tissue Eng. Regen. Med. 2013, 10, 200–210. [Google Scholar] [CrossRef]
- Yang, B.S.; Li, J.; Wang, H. Research progress in sequences comparison and crystal structure of silk fibroin. Adv. Mater. Res. 2013, 664, 443–448. [Google Scholar] [CrossRef]
- Tsukada, M.; Freddi, G.; Monti, P. Structure and molecular conformation of tussah silk fibroin films: Effect of methanol. J. Polym. Sci. Pol. Phys. 1995, 33, 1995–2001. [Google Scholar] [CrossRef]
- Kundu, B.; Kurland, N.E.; Bano, S. Silk proteins for biomedical applications: Bioengineering perspectives. Prog. Polym. Sci. 2014, 39, 251–267. [Google Scholar] [CrossRef]
- Omenetto, F.G.; Kaplan, D.L. New Opportunities for an Ancient Material. Science 2010, 329, 528–531. [Google Scholar] [CrossRef]
- Pal, S.; Kundu, J.; Talukdar, S. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini. Macromol. Biosci. 2013, 13, 1020–1035. [Google Scholar] [CrossRef]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Termosensitive sol-gel reversible hydrogels. Adv. Drug Deliver. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Wang, B.; Wu, X.; Li, J. Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly(N-isopropylacrylamide) interpenetrating polymer network hydrogel. Polymers 2016, 8, 110. [Google Scholar] [CrossRef]
- Mundargi, R.C.; Shelke, N.B.; Babu, V.R.; Patel, P. Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly (N-isopropylacrylamide) for controlled release of atenolol. J. Appl. Polym. Sci. 2010, 116, 1832–1841. [Google Scholar] [CrossRef]
- Reddy, K.M.; Babu, V.R.; Rao, K.S.V.K. Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J. Appl. Polym. Sci. 2008, 107, 2820–2829. [Google Scholar] [CrossRef]
- Audrey, T.; Nathalie, D.G.; Dragan, J.; Rino, M.; Marijn, M.C.G.W.; Christophe, L. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fiber surface. Colloids Surf. A Physicochem. Eng. Asp. 2009, 352, 126–135. [Google Scholar]
- Heskins, M.; Guillet, J.E. Solution properties of poly (N-isopropylacrylamide). J. Macromol. Sci. A 1968, 2, 1441–1455. [Google Scholar] [CrossRef]
- Schild, H.G. Poly (N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Miyahara, Y.; Nagaya, N.; Kataoka, M.; Miyahara, Y. Monolayered mesenchymal stems cells repair scarred myocardium after myocardial infarction. Nat. Med. 2006, 12, 459–465. [Google Scholar] [CrossRef]
- Joseph, N.; Prasad, T.; Raj, V.; Sreenivasan, K.; Kumary, T.V. A cytocompatible poly (N-isopropylacrylamide-co-glycidylmethacrylate) coated surface as new substrate for corneal tissue Engineering. J. Bioact. Compat. Pol. 2010, 25, 58–74. [Google Scholar] [CrossRef]
- Rejinold, N.S.; Sreerekha, P.R.; Chennazhi, K.P. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int. J. Biol. Macromol. 2011, 49, 161–172. [Google Scholar] [CrossRef]
- Akimoto, J.; Nakayama, M.; Okano, T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release 2014, 193, 2–8. [Google Scholar] [CrossRef]
- Mao, Z.; Ma, L.; Yan, J. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly (N-isopropylacrylamide) copolymer. Biomaterials 2007, 28, 4488–4500. [Google Scholar] [CrossRef]
- Park, J.S.; Yang, H.N.; Woo, D.G. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 2013, 34, 8819–8834. [Google Scholar] [CrossRef]
- Okano, T.; Yamada, N.; Sakai, H. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J. Biomed. Mater. Res. A 1993, 27, 1243–1251. [Google Scholar] [CrossRef]
- Akimoto, A.M.; Niitsu, E.H.; Nagase, K. Mesenchylmal stem cell culture on poly (N-isopropylacrylamide) hydrogel with repeated thermo-stimulation. Int. J. Mol. Sci. 2018, 19, 1253. [Google Scholar] [CrossRef]
- Kwon, O.H.; Kikuchi, A.; Yamato, M. Rapid cell sheet detachment from poly (N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. B 2015, 50, 82–89. [Google Scholar] [CrossRef]
- Doorty, K.B.; Golubeva, T.A.; Gorelov, A.V. Poly(N-isopropylacrylamide) co-polymer films as potentialvehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovasc. Pathol. 2003, 12, 105–110. [Google Scholar] [CrossRef]
- Wang, Q.; Asoh, T.A.; Uyama, H. Rapid uniaxial actuation of layered bacterial cellulose/poly (N-isopropylacrylamide) composite hydrogel with high mechanical strength. RSC Adv. 2018, 8, 12608–12613. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Freddi, G.; Monti, P.; Nagura, M. Structure and molecular conformation of tussah silk fibroin films: Effect of heat treatment. J. Polym. Sci. Pol. Phys. 1995, 33, 1995–2001. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 2010, 38, 679–690. [Google Scholar] [CrossRef]
- Sohn, S.; Strey, H.H.; Gido, S.P. Phase behavior and hydration of silk fibroin. Biomacromolecules 2004, 5, 751–757. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wu, D.Q.; Chu, C.C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 2004, 25, 3793–3805. [Google Scholar] [CrossRef]
- Haq, M.A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 842–855. [Google Scholar] [CrossRef]
- Discher, D.E. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef]
- Nemir, S.; West, J.L. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 2010, 38, 2–20. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, J.; Fung, Y.C. Neutral axis location in bending and young’s modulus of different layers of arterial wall. Am. J. Physiol. Heart. C 1993, 265, H52–H60. [Google Scholar] [CrossRef]
- Zhang, S.; Marini, D.M.; Hwang, W. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol. 2002, 6, 865–871. [Google Scholar] [CrossRef]
Code | ASF:NIPAAm (Mass Ratio) | ASF (mg) | NIPAAm (mL) | APS (mg) | 5%TEMED (µL) |
---|---|---|---|---|---|
A1N9 | 1:9 | 52.5 | 6.3 | 0.95 | 19 |
A2N8 | 2:8 | 105 | 5.6 | 0.84 | 16.8 |
A3N7 | 3:7 | 157.5 | 4.9 | 0.74 | 14.8 |
A4N6 | 4:6 | 210 | 4.2 | 0.63 | 12.6 |
A5N5 | 5:5 | 262.5 | 3.5 | 0.53 | 10.6 |
Assignment | A.p. fiber (%) | A1N9 (%) | A2N8 (%) | A3N7 (%) | A4N6 (%) | A5N5 (%) |
---|---|---|---|---|---|---|
β-sheet (silkII) | 61.61 | 60.99 | 61.29 | 61.81 | 61.16 | 61.24 |
β-turn (silkI) | 24.13 | 24.16 | 24.75 | 24.41 | 30.64 | 27.32 |
α-helix (silkI) | 10.01 | 9.08 | 9.94 | 9.37 | 4.73 | 7.43 |
Random coil (silkI) | 4.25 | 5.77 | 4.02 | 4.41 | 3.47 | 4.01 |
Assignment | ASF | A1N9 | A2N8 | A3N7 | A4N6 | A5N5 |
---|---|---|---|---|---|---|
Peak 1 (°C) | 303.7 | - | - | - | - | - |
Peak 2 (°C) | 351.2 | 355.5 | 357.4 | 357.5 | 359.6 | 355.7 |
Peak 3 (°C) | - | 405.3 | 402.7 | 399.5 | 399.2 | 396.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, S.; Wang, Y.; Si, B.; Cheng, D.; Liu, L.; Lu, Y. Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers 2019, 11, 302. https://doi.org/10.3390/polym11020302
Wang B, Zhang S, Wang Y, Si B, Cheng D, Liu L, Lu Y. Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers. 2019; 11(2):302. https://doi.org/10.3390/polym11020302
Chicago/Turabian StyleWang, Boxiang, Song Zhang, Yifan Wang, Bo Si, Dehong Cheng, Li Liu, and Yanhua Lu. 2019. "Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength" Polymers 11, no. 2: 302. https://doi.org/10.3390/polym11020302
APA StyleWang, B., Zhang, S., Wang, Y., Si, B., Cheng, D., Liu, L., & Lu, Y. (2019). Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers, 11(2), 302. https://doi.org/10.3390/polym11020302