Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Manufacturing
2.2. Material Evaluation
2.2.1. Scanning Electron Microscopy
2.2.2. Roughness
2.2.3. Surface Wettability
2.2.4. Tensile Test
2.2.5. Differential Scanning Calorimetry
2.2.6. X-ray Diffraction Measurement
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Han, L.; Li, X.; Li, Y.; Huang, T.; Wang, Y.; Wu, J.; Xiang, F. Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater. Sci. Eng. A 2010, 527, 3176–3185. [Google Scholar] [CrossRef]
- Schimanski, T. High-Performance Polypropylene Structures for Eco-Friendly, Fully Recyclable Composites. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Li, C.H. Modification and characterization of polypropylene. J. Chem. Pharm. Res. 2014, 6, 1467–1473. [Google Scholar]
- Naddeo, C.; Vertuccio, L.; Barra, G.; Guadagno, L. Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability. Materials 2017, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Sastri, V.S. Plastic in Medical Devices: Properties, Requirements and Applications; Elsevier: Burlington, MA, USA, 2013. [Google Scholar]
- Carraher, C.E., Jr. Introduction to Polymer Chemistry, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 35–36. [Google Scholar]
- Jeong, S.H.; Yeo, S.Y.; Chul, S. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Karian, H.G. Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2009; p. 26. [Google Scholar]
- Medical Devices Classifications. Available online: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device (accessed on 31 August 2018).
- Bader, G.; Fauconnier, A.; Guyot, B.; Ville, Y. Use of prosthetic materials in reconstructive pelvic floor surgery. An evidence-based analysis. Gynecol. Obstet. Fertil. 2006, 34, 292–297. [Google Scholar] [CrossRef]
- Clavé, A.; Yahi, H.; Hammou, J.C.; Montanari, S.; Gounon, P.; Clavé, H. Polypropylene as a reinforcement in pelvic surgeryis not inert: Comparative analysis of 100 explants. Int. Urogynecol. J. 2010, 21, 261–270. [Google Scholar]
- Pikaart, D.P.; Miklos, J.R.; Moore Robert, D. Laparoscopic Removal of Pubovaginal Polypropylene Tension-Free Tape Slings. J. Soc. Laparoendosc. Surg. 2006, 10, 220–225. [Google Scholar]
- Lee, Y.-S.; Han, D.-H.; Lim, S.-H.; Kim, T.-H.; Choo, M.-S. Efficacy and Safety of “Tension-free” Placement of Gyne mesh PS for the Treatment of Anterior Vaginal Wall Prolapse. Int. Neurourol. J. 2010, 14, 34–42. [Google Scholar] [CrossRef]
- Achtari, C.; Hiscock, R.; O’Reilly, B.A.; Schierlitz, L.; Dwyer, P.L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 2005, 16, 389–394. [Google Scholar] [CrossRef]
- Prudente, A.; Fávaro, W.J.; LatufFilho, P.; Riccetto, C.L.Z. Host inflammatory response to polypropylene implants: Insights from a quantitative immunohistochemical and birefringence analysis in a rat subcutaneous model. Int. Braz. J. Urol. 2016, 42, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Oliani, W.L.; Parra, D.F.; Komatsu, L.G.H.; Lincopan, N.; Rangari, V.K.; Lugao, A.B. Nanocomposites Based on Polypropylene with Nanosilver Particles and Antibacterial Behavior—A Review. In Proceedings of the 22°CBECiMat—CongressoBrasileiro de Engenharia e Ciência dos Materiais, Natal, Brazil, 6–10 November 2016; pp. 9357–9368. [Google Scholar]
- Yeo, S.Y.; Jeong, S.H. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym. Int. 2003, 52, 1053–1057. [Google Scholar] [CrossRef]
- Oliani, W.L.; Parra, D.F.; Komatsu, L.G.H.; Lincopan, N.; Rangari, V.K.; Lugao, A.B. Fabrication of polypropylene/silver nanocomposites for biocidal applications. Mater. Sci. Eng. C 2017, 75, 845–853. [Google Scholar] [CrossRef]
- Jokar, M.; Rahman, R.A.; Ibrahim, N.A.; Abdullah, L.C.; Pan, C. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)–silver nanocomposite film. Food Bioprocess Technol. 2012, 5, 719–728. [Google Scholar] [CrossRef]
- ISO. Biological Evaluation of Medical Devices—Part 13: Identification and Quantification of Degradation Products from Polymeric Medical Devices; ISO 10993-13:2010; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. Plastics—Determination of Tensile Properties—Part 1: General Principles; PN-EN ISO 527-1:2012; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Turner-Jones, A.; Aizlewood, J.M.; Beckett, D.R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158. [Google Scholar] [CrossRef]
- Ziąbka, M.; Dziadek, M.; Menaszek, E.; Banasiuk, R.; Królicka, A. Middle Ear Prosthesis with Bactericidal Efficacy—In Vitro Investigation. Molecules 2017, 22, 1681. [Google Scholar] [CrossRef] [Green Version]
- Mandapalli, P.K.; Labala, S.; Chawla, S. Polymer–gold nanoparticle composite films for topical application: Evaluation of physical properties and antibacterial activity. Polym. Compos. 2015, 38, 2829–2840. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2100–2116. [Google Scholar] [CrossRef] [Green Version]
- Monje, A.; Ravidà, A.; Wang, H.L.; Helms, J.A.; Brunski, J.B. Relationship between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implants. 2019, 34, 7–23. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, M.Q.; Rong, M.Z.; Friedrich, K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Comp. Sci. Technol. 2002, 62, 1327–1340. [Google Scholar] [CrossRef]
- Chan, C.M.; Wu, J.; Li, J.X.; Cheung, Y.K. Polypropylene/calcium carbonate nanocomposites. Polymer 2002, 43, 2981–2992. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Papageorgiou, G.Z.; Pavlidou, E.; Vouroutzis, N.; Palatzoglou, P.; Karayannidis, G.P. Preparation by Melt Mixing and Characterization ofIsotactic Polypropylene/SiO2Nanocomposites Containing Untreated and Surface-Treated Nanoparticles. J. App. Polym. Sci. 2006, 100, 2684–2696. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Kontou, E.; Niaounakis, M. Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 2006, 47, 1267–1280. [Google Scholar] [CrossRef]
- Tjong, S.C.; Bao, S. Structure and Mechanical Behavior of Isotactic Polypropylene Composites Filled with Silver Nanoparticles. e Polymers 2007, 7, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Chae, D.W.; Kim, B.C. Physical Properties of Isotactic Poly(propylene)/Silver Nanocomposites: Dynamic Crystallization Behavior and Resultant Morphology. Macromol. Mater. Eng. 2005, 290, 1149–1156. [Google Scholar] [CrossRef]
- Hybiak, D.; Garbarczyk, J. Silver nanoparticles in isotactic polypropylene (iPP). Part I. Silver nanoparticles as metallic nucleating agents for β-iPP polymorph. Polimery 2014, 59, 585–591. [Google Scholar] [CrossRef]
- Camacho, P.H.; Morales-Cepeda, A.B.; Salas-Papayanopolos, H.; Bautista, J.E.; Castro, C.; Lozano, T.; Lafleur, P.G. Crystallization behavior of polypropylene/silver nanocomposites using polyethylene glycol as reducing agent and interface modifier. J. Thermoplast.Compos. Mater. 2015, 30, 662–677. [Google Scholar] [CrossRef]
- Arutchelvi, J.; Sudhakar, M.; Arkatkar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of polyethylene and polypropylene. Ind. J. Biotechnol. 2018, 7, 9–22. [Google Scholar]
- Massey, S.; Adnot, A.; Rjeb, A.; Roy, D. Action of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopy. Express Pol. Lett. 2007, 1, 506–511. [Google Scholar] [CrossRef]
- Hao, L.; Yang, H.; Du, C.; Fu, X.; Zhao, N.; Xu, S.; Wang, Y. Directing the fate of human and mouse mesenchymal stem cells by hydroxyl–methyl mixed self-assembled monolayers with varying wettability. J. Mater. Chem. B 2014, 2, 4794–4801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Before Incubation | After 12-Months Incubation | After 24-Months Incubation | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample | DSC | XRD | DSC | XRD | DSC | XRD | |||
Tm (°C) | χC (%) | kβ (%) | Tm (°C) | χC (%) | kβ (%) | Tm (°C) | χC (%) | kβ (%) | |
MG12 | 173.9 | 46.4 | 0.6 | 172.9 | 39.2 | 6.1 | 172.2 | 40.3 | 10.1 |
MG12_0.5Ag | 172.3 | 47.6 | 1.2 | 171.2 | 38.3 | 7.5 | 170.7 | 36.8 | 11.6 |
MG12_1Ag | 173.3 | 43.0 | 10.0 | 173.1 | 39.8 | 11.8 | 169.7 | 38.9 | 11.9 |
MG03 | 176.2 | 44.4 | 11.9 | 173.5 | 39.7 | 18.7 | 170.9 | 37.0 | 19.6 |
MG03_0.5Ag | 175.2 | 49.3 | 14.7 | 173.9 | 37.8 | 27.5 | 171.2 | 36.6 | 28.6 |
MG03_1Ag | 173.5 | 43.8 | 16.9 | 173.7 | 39.8 | 18.0 | 170.2 | 37.1 | 25.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziąbka, M.; Dziadek, M. Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers 2019, 11, 2018. https://doi.org/10.3390/polym11122018
Ziąbka M, Dziadek M. Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers. 2019; 11(12):2018. https://doi.org/10.3390/polym11122018
Chicago/Turabian StyleZiąbka, Magdalena, and Michał Dziadek. 2019. "Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles" Polymers 11, no. 12: 2018. https://doi.org/10.3390/polym11122018
APA StyleZiąbka, M., & Dziadek, M. (2019). Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers, 11(12), 2018. https://doi.org/10.3390/polym11122018