Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Sample Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef]
- Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Kim, J.-G.; Yoo, S.J.; Uher, C.; Kotov, N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; You, J.; Park, M.S.; Al Hossain, M.S.; Yamauchi, Y.; Ho Kim, J. Conductive polymers for next-generation energy storage systems: Recent progress and new functions. Mater. Horizons 2016, 3, 517–535. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R.; et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces 2017, 9, 12147–12164. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998, 23, 277–324. [Google Scholar] [CrossRef]
- Shin, S.R.; Shin, C.; Memic, A.; Shadmehr, S.; Miscuglio, M.; Jung, H.Y.; Jung, S.M.; Bae, H.; Khademhosseini, A.; Tang, X.; et al. Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater. 2015, 25, 4486–4495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chen, Q.; Zhen, Z.; Jiang, X.; Zhong, M.; Zhu, H. Cellulose-templated graphene monoliths with anisotropic mechanical, thermal, and electrical properties. ACS Appl. Mater. Interfaces 2015, 7, 19145–19152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, A.R.; Yu, H.; Shin, T.J.; Yang, C.; Oh, J.H. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 2013, 135, 9540–9547. [Google Scholar] [CrossRef] [PubMed]
- Khim, D.; Luzio, A.; Bonacchini, G.E.; Pace, G.; Lee, M.J.; Noh, Y.Y.; Caironi, M. Uniaxial alignment of conjugated polymer films for high-performance organic field-effect transistors. Adv. Mater. 2018, 30, 1705463. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.A.; Casavant, M.J.; Qin, X.C.; Huffman, C.B.; Boul, P.J.; Ericson, L.M.; Haroz, E.H.; O’Connell, M.J.; Smith, K.; Colbert, D.T.; et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 2001, 338, 14–20. [Google Scholar] [CrossRef]
- Yamamoto, N.; Guzman de Villoria, R.; Wardle, B.L. Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 2012, 72, 2009–2015. [Google Scholar] [CrossRef]
- Jou, W.S.; Cheng, H.Z.; Hsu, C.F. A carbon nanotube polymer-based composite with high electromagnetic shielding. J. Electron. Mater. 2006, 35, 462–470. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, T.; He, R.; Guan, G.; Li, H.; Qiu, L.; Peng, H. Aligned carbon nanotube sheets for the electrodes of organic solar cells. Adv. Mater. 2011, 23, 5436–5439. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, T.; Yang, Z.; Peng, H. The alignment of carbon nanotubes: An effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013, 46, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ledezma, C.; Blanc, C.; Puech, N.; Maugey, M.; Zakri, C.; Anglaret, E.; Poulin, P. Conductivity anisotropy of assembled and oriented carbon nanotubes. Phys. Rev. E 2011, 84, 062701. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Li, J.; Tan, Y.J.; Zhang, K.; Shi, Y.D.; Wu, H.; Guo, S.; Wang, M. Low magnetic field-induced morphological regulation in isotactic polypropylene/poly(ε-caprolactone)/carbon black composites for high electrical conductivity and conductive anisotropy. Compos. Commun. 2018, 9, 58–62. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Gao, J.; Yoon, H.G.; Jin, L.; Forsyth, M.; Dingemans, T.J.; Madsen, L.A. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 2016, 28, 2571–2578. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.D.; Yu, H.O.; Li, J.; Tan, Y.J.; Chen, Y.F.; Wang, M.; Wu, H.; Guo, S. Low magnetic field-induced alignment of nickel particles in segregated poly(l-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chem. Eng. J. 2018, 347, 472–482. [Google Scholar] [CrossRef]
- Na, S.I.; Wang, G.; Kim, S.S.; Kim, T.W.; Oh, S.H.; Yu, B.K.; Lee, T.; Kim, D.Y. Evolution of nanomorphology and anisotropic conductivity in solvent -modified PEDOT: PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 2009, 19, 9045–9053. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, N.; Zhang, L.; Tian, M.; Zou, H.; Mi, J. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. J. Chem. Phys. 2013, 139, 024903. [Google Scholar] [CrossRef] [PubMed]
- Nogami, Y.; Pouget, J.P.; Ishiguro, T. Structure of highly conducting PF6−-doped polypyrrole. Synth. Met. 1994, 62, 257–263. [Google Scholar] [CrossRef]
- Chabinyc, M.L.; Salleo, A.; Wu, Y.; Liu, P.; Ong, B.S.; Heeney, M.; McCulloch, I. Lamination method for the study of interfaces in polymeric thin film transistors. J. Am. Chem. Soc. 2004, 126, 13928–13929. [Google Scholar] [CrossRef] [PubMed]
- Hamidi-Sakr, A.; Schiefer, D.; Covindarassou, S.; Biniek, L.; Sommer, M.; Brinkmann, M. Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: Structural model and influence of molecular weight. Macromolecules 2016, 49, 3452–3462. [Google Scholar] [CrossRef]
- Vennerberg, D.; Kessler, M.R. Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water. Carbon 2014, 80, 433–439. [Google Scholar] [CrossRef][Green Version]
- Lyutakov, O.; Tuma, J.; Prajzler, V.; Huttel, I.; Hnatowicz, V.; Švorčík, V. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films 2010, 519, 1452–1457. [Google Scholar] [CrossRef]
- Fischer, J.E.; Zhou, W.; Vavro, J.; Llaguno, M.C.; Guthy, C.; Haggenmueller, R.; Casavant, M.J.; Walters, D.E.; Smalley, R.E. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties. J. Appl. Phys. 2003, 93, 2157–2163. [Google Scholar] [CrossRef]
- Inoue, Y.; Suzuki, Y.; Minami, Y.; Muramatsu, J.; Shimamura, Y.; Suzuki, K.; Ghemes, A.; Okada, M.; Sakakibara, S.; Mimura, H.; et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 2011, 49, 2437–2443. [Google Scholar] [CrossRef]
- Dong, B.; Lu, N.; Zelsmann, M.; Kehagias, N.; Fuchs, H.; Sotomayor Torres, C.M.; Chi, L.F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006, 16, 1937–1942. [Google Scholar] [CrossRef]
- Mäkelä, T.; Haatainen, T.; Ahopelto, J.; Isotalo, H. Imprinted electrically conductive patterns from a polyaniline blend. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19, 487–489. [Google Scholar] [CrossRef]
- Elashnikov, R.; Fitl, P.; Svorcik, V.; Lyutakov, O. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow. Appl. Surf. Sci. 2017, 394, 562–568. [Google Scholar] [CrossRef]
- Kim, H.N.; Kang, D.H.; Kim, M.S.; Jiao, A.; Kim, D.H.; Suh, K.Y. Patterning methods for polymers in cell and tissue engineering. Ann. Biomed. Eng. 2012, 40, 1339–1355. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Choi, W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009, 19, 085019. [Google Scholar] [CrossRef]
- Elashnikov, R.; Trelin, A.; Otta, J.; Fitl, P.; Mares, D.; Jerabek, V.; Svorcik, V.; Lyutakov, O. Laser patterning of transparent polymers assisted by plasmon excitation. Soft Matter 2018, 14, 4860–4865. [Google Scholar] [CrossRef] [PubMed]
- Kirchmeyer, S.; Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 2005, 15, 2077–2088. [Google Scholar] [CrossRef]
- Fujii, S.; Suzuki, Y.; Kawamata, J.; Tsunashima, R. Large in-plane/out-of-plane anisotropic conduction in PEDOT-based hybrid films: Lamellar assemblies structured by mono-layered nanosheets. J. Mater. Chem. C 2015, 37, 153–7158. [Google Scholar] [CrossRef]
- Zhou, J.; Fukawa, T.; Kimura, M. Directional electromechanical properties of PEDOT/PSS films containing aligned electrospun nanofibers. Polym. J. 2011, 43, 849–854. [Google Scholar] [CrossRef][Green Version]
- Guselnikova, O.A.; Postnikov, P.S.; Fitl, P.; Tomecek, D.; Sajdl, P.; Elashnikov, R.; Kolska, Z.; Chehimi, M.M.; Švorčík, V.; Lyutakov, O. Tuning of PEDOT: PSS Properties Through Covalent Surface Modification. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 378–387. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Guselnikova, O.; Postnikov, P.; Fitl, P.; Lapcak, L.; Svorcik, V.; Lyutakov, O. Reversible switching of PEDOT: PSS conductivity in the dielectric–conductive range through the redistribution of light-governing polymers. RSC Adv. 2018, 8, 11198–11206. [Google Scholar] [CrossRef]
- Hermann, D.S.; Rudquist, P.; Ichimura, K.; Kudo, K.; Komitov, L.; Lagerwall, S.T. Flexoelectric polarization changes induced by light in a nematic liquid crystal. Phys. Rev. E 1997, 55, 2857. [Google Scholar] [CrossRef]
- Obi, M.; Morino, S.Y.; Ichimura, K. Photocontrol of liquid crystal alignment by polymethacrylates with diphenylacetylene side chains. Chem. Mater. 1999, 11, 1293–1301. [Google Scholar] [CrossRef]
- Filimonov, V.D.; Trusova, M.E.; Postnikov, P.S.; Krasnokutskaya, A.E.; Lee, Y.M.; Hwang, H.Y.; Kim, H.; Chi, K.W. Unusually stable, versatile, and pure arenediazonium tosylates: Their preparation, structures, and synthetic applicability. Org. Lett. 2008, 10, 3961–3964. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Wysiecka, E.; Łukasik, N.; Biernat, J.F.; Luboch, E. Azo group(s) in selected macrocyclic compounds. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 189–257. [Google Scholar] [CrossRef] [PubMed]
- Aleksejeva, J.; Reinfelde, M.; Teteris, J. Direct surface relief pattering of azo-polymers films via holographic recording. Can. J. Phys. 2014, 92, 842–844. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P.; Pezolet, M.; Audet, P.; Brown, D.; To, S. Azo polymers for reversible optical storage. 4. Cooperative motion of rigid groups in semicrystalline polymers. Macromolecules 1994, 27, 2580–2585. [Google Scholar] [CrossRef]
- Yager, K.G.; Barrett, C.J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mat. Sci. 2001, 5, 487–494. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Li, P.; Zhang, Y.; Zheng, Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Anjum, D.H.; Chen, L.; Xu, X.; Ventura, I.A.; Jiang, L.; Lubineau, G. The temperature-dependent microstructure of PEDOT/PSS films: Insights from morphological, mechanical and electrical analyses. J. Mater. Chem. C 2014, 2, 9903–9910. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar]
- Voge, C.M.; Kariolis, M.; MacDonald, R.A.; Stegemann, J.P. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain induced matrix alignment. J. Biomed. Mater. Res. A 2008, 86, 269–277. [Google Scholar] [CrossRef] [PubMed]
Band Position, cm−1 | Assignment |
---|---|
1746 | C=O in PLLA |
1587 | Ar ring |
1520 | N=N trans |
1507 | NO2 str |
1450 | CH2 vib in PLLA |
1381 | SO2 str in PSS |
1367 | N=N trans |
1341 | CH2 def in PLLA |
1294 | NO2 str |
1272 | S=O vib in PEDOT |
1178 | O–C–O str in PLLA |
1125 | O–C–O str in PEDOT |
1075 | C–O str in PLLA |
1038 | O–S–O str in PSS |
1008 | Ar ring |
992 | Ar ring |
957 | C–S stretch in PEDOT |
923 | Ar ring |
866 | CH2 def in PLLA |
756 | CH2 def in PLLA |
738 | Ar ring |
699 | Ar ring |
676 | C–S stretch in PEDOT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalachyova, Y.; Guselnikova, O.; Hnatowicz, V.; Postnikov, P.; Švorčík, V.; Lyutakov, O. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers 2019, 11, 1856. https://doi.org/10.3390/polym11111856
Kalachyova Y, Guselnikova O, Hnatowicz V, Postnikov P, Švorčík V, Lyutakov O. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers. 2019; 11(11):1856. https://doi.org/10.3390/polym11111856
Chicago/Turabian StyleKalachyova, Yevgeniya, Olga Guselnikova, Vladimir Hnatowicz, Pavel Postnikov, Vaclav Švorčík, and Oleksiy Lyutakov. 2019. "Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity" Polymers 11, no. 11: 1856. https://doi.org/10.3390/polym11111856
APA StyleKalachyova, Y., Guselnikova, O., Hnatowicz, V., Postnikov, P., Švorčík, V., & Lyutakov, O. (2019). Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers, 11(11), 1856. https://doi.org/10.3390/polym11111856