The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan-PEGDE and Chitosan-GA Films
2.3. Characterization of GA-crosslinked and PEGDE Crosslinked CHT Films
2.3.1. Fourier-transform-infrared Spectroscopy (FTIR)
2.3.2. Free Amine Groups Determination
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. X-Ray Diffraction (XRD)
2.3.5. Scanning Electron Microscopy (SEM)
2.3.6. X-ray Photoelectron Spectroscopy (XPS)
2.3.7. Atomic Force Microscopy (AFM)
2.3.8. Contact Angles
2.4. Biocompatibility Studies
2.4.1. Cell Viability and Proliferation Studies
2.4.2. Integrin and Vinculin Expression Analysis
3. Results and Discussion
3.1. Composition and Structure of Crosslinked CHT
3.1.1. FTIR Spectroscopy
3.1.2. Determination of Free Amino Groups in Chitosan Films
3.1.3. Thermogravimetric Analysis (TGA)
3.1.4. X-Ray Diffraction (XRD)
3.2. Surface Properties of Crosslinked CHT
3.2.1. Elemental Composition by EDX and XPS
3.2.2. X-ray Photoelectron Spectroscopy (XPS)
3.2.3. Surface Topography by SEM and AFM
3.2.4. Measurement of Contact Angle
3.3. Cell Viability and Proliferation Studies
3.3.1. Analysis of Cellular Adhesion by Scanning Electron Microscopy (SEM)
3.3.2. Vinculin and Actin Expression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S.K. Chitosan composites for bone tissue engineering—An overview. Mar. Drugs 2010, 8, 2252–2266. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, C.H.; Kim, H.E.; Jeong, S.H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr. Polym. 2018, 186, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Kumari, S.; Rath, P.; Sri Hari Kumar, A.; Tiwari, T.N. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 2015, 3, 77–85. [Google Scholar] [CrossRef]
- Xia, W.; Liu, P.; Zhang, J.; Chen, J. Food Hydrocolloids Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011, 25, 170–179. [Google Scholar] [CrossRef]
- de Britto, D.; Campana-Filho, S.P. Kinetics of the thermal degradation of chitosan. Thermochim. Acta 2007, 465, 73–82. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Xie, W.; Xu, P.; Liu, Q. Antioxidant Activity of Water-Soluble Chitosan Derivatives. Bioorganic. Med. Chem. Lett. 2001, 11, 1699–1701. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.; Yu, H.; Zhang, Y.; Liu, G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Orlandini, F.; Pacetti, D.; Boselli, E.; Frega, N.G.; Tosi, G.; Muzzarelli, C. Chitosan taurocholate capacity to bind lipids and to undergo enzymatic hydrolysis: An in vitro model. Carbohydr. Polym. 2006, 66, 363–371. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, L.; Yu, Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 2004, 317, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Salah, R.; Michaud, P.; Mati, F.; Harrat, Z.; Lounici, H.; Abdi, N.; Drouiche, N.; Mameri, N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int. J. Biol. Macromol. 2013, 52, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Morsi, R.E.; Kerch, G.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Khawar, K.M. Current advancements in chitosan-based film production for food technology; A review. Int. J. Biol. Macromol. 2019, 121, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.; Al-Samadani, K.H.; Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Qasim, S.B. Chitosan biomaterials for current and potential dental applications. Materials 2017, 10, 602. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Kumar, M. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Custódio, C.A.; Cerqueira, M.T.; Marques, A.P.; Reis, R.L.; Mano, J.F. Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials 2015, 43, 23–31. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A.; Aranaz, I.; Mengíbar, M.; et al. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar] [Green Version]
- Bagheri-Khoulenjani, S.; Taghizadeh, S.M.; Mirzadeh, H. An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr. Polym. 2009, 78, 773–778. [Google Scholar] [CrossRef]
- Mechanical, T. The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from. Materials 2009, 2, 374–398. [Google Scholar]
- Mcconnell, E.L.; Murdan, S.; Basit, A.W. An investigation into the digestion of chitosan (noncrosslinked and crosslinked) by Human Colonic Bacteria. J. Pharm. Sci. 2008, 97, 3820–3829. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Urrutia, V.A.; Mata-Haro, V.; Cauich-Rodriguez, J.V.; Herrera-Kao, W.A.; Cervantes-Uc, J.M. Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. Eur. Polym. J. 2019, 117, 424–433. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Islam, N.; Dmour, I.; Taha, M.O. Heliyon degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019, 5, e01684. [Google Scholar] [CrossRef]
- Sakurai, K.; Takagi, M.; Takahashi, T. Crystal structure of chitosan. I. Unit cell parameters. Fiber 1984, 40, T246–T253. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhao, K.S. Dielectric relaxations in chitosan solution with varying concentration and temperature: Analysis coupled with a scaling approach and thermodynamical functions. Soft Matter 2010, 6, 2742–2750. [Google Scholar] [CrossRef]
- Gentleman, M.M.; Gentleman, E. The role of surface free energy in osteoblast–biomaterial interactions. Int. Mater. Rev. 2014, 59, 417–429. [Google Scholar] [CrossRef]
- Kumar-Krishnan, S.; Prokhorov, E.; Ramírez, M.; Hernandez-Landaverde, M.A.; Zarate-Triviño, D.G.; Kovalenko, Y.; Sanchez, I.C.; Meńdez-Nonell, J.; Luna-Bárcenas, G. Novel gigahertz frequency dielectric relaxations in chitosan films. Soft Matter 2014, 10, 8673–8684. [Google Scholar] [CrossRef]
- Neto, C.G.T.; Giacometti, J.A.; Job, A.E.; Ferreira, F.C.; Fonseca, J.L.C.; Pereira, M.R. Thermal Analysis of Chitosan Based Networks. Carbohydr. Polym. 2005, 62, 97–103. [Google Scholar] [CrossRef]
- Zawadzki, J.; Kaczmarek, H. Thermal treatment of chitosan in various conditions. Carbohydr. Polym. 2010, 80, 395–401. [Google Scholar] [CrossRef]
- Sweidan, K.; Jaber, A.-M.; Al-jbour, N.; Obaidat, R.; Al-Remawic, M.; Badwan, A. Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration. J. Excip. Food Chem. 2011, 2, 16–25. [Google Scholar]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Ding, R.; Zhang, J.; Liu, J. Determination of the degree of deacetylation of chitosan by potentiometric titration preceded by enzymatic pretreatment. Carbohydr. Polym. 2011, 83, 813–817. [Google Scholar] [CrossRef]
- Muraleedharan, K.; Alikutty, P.; Abdul Mujeeb, V.M.; Sarada, K. Kinetic studies on the thermal Dehydration and degradation of chitosan and citralidene chitosan. J. Polym. Environ. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Baroudi, A.; García-Payo, C.; Khayet, M. Structural, mechanical, and transport properties of electron beam-irradiated chitosan membranes at different doses. Polymers 2018, 10, 117. [Google Scholar] [CrossRef]
- Science, P. The Structure and Properties of Chitosan/Polyethylene. Chin. J. Polym. Sci. 2008, 26, 621–630. [Google Scholar]
- Balázs, N.; Sipos, P. Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. Carbohydr. Res. 2007, 342, 124–130. [Google Scholar] [CrossRef]
- Bumgardner, J.D.; Wiser, R.; Elder, S.H.; Jouett, R.; Yang, Y.; Ong, J.L. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed. 2003, 14, 1401–1409. [Google Scholar] [CrossRef]
- Gong, H.; Zhong, Y.; Li, J.; Gong, Y.; Zhao, N.; Zhang, X. Studies on nerve cell affinity of chitosan-derived materials. J. Biomed. Mater. Res. 2002, 52, 285–295. [Google Scholar]
- López, F.A.; Mercê, A.L.R.; Alguacil, F.J.; López-Delgado, A. A kinetic study on the thermal behaviour of chitosan. J. Therm. Anal. Calorim. 2008, 91, 633–639. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- El-Hefian, E.A.; Elgannoudi, E.S.; Mainal, A.; Yahaya, A.H. Characterization of chitosan in acetic acid: Rheological and thermal studies. Turk. J. Chem. 2010, 34, 47–56. [Google Scholar]
- Vartiainen, J.; Harlin, A. Crosslinking as an efficient tool for decreasing moisture sensitivity of biobased nanocomposite films. Mater. Sci. Appl. 2011, 2, 346–354. [Google Scholar] [CrossRef]
- Petrova, V.; Chernyakov, D.D.; Moskalenko, Y.E.; Gasilova, E.R.; Strelina, I.; Okatova, O.V.; Baklagina, Y.G.; Vlasova, E.N.; Skorik, Y. O,N-(2-sulfoethyl)chitosan: Synthesis and properties of solutions and films. Carbohydr. Polym. 2017, 157, 866–874. [Google Scholar] [CrossRef]
- Naito, P.K.; Ogawa, Y.; Kimura, S.; Iwata, T.; Wada, M. Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1065–1069. [Google Scholar] [CrossRef]
- Samuels, R.J. Solid state characterization of the structure of chitosan films. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1081–1105. [Google Scholar] [CrossRef]
- Rivero, S.; García, M.A.; Pinotti, A. Heat treatment to modify the structural and physical properties of chitosan-based films. J. Agric. Food Chem. 2012, 60, 492–499. [Google Scholar] [CrossRef]
- Umemura, K.; Kawai, S. Modification of chitosan by the Maillard reaction using cellulose model compounds. Carbohydr. Polym. 2007, 68, 242–248. [Google Scholar] [CrossRef]
- Leceta, I.; Peñalba, M.; Arana, P.; Guerrero, P.; De La Caba, K. Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. Eur. Polym. J. 2015, 66, 170–179. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; Caba, K. De Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Khairkar, S.R.; Raut, A.R. Study of chitosan crosslinked with glutaraldeyde as biocomposite material. World J. Pharm. Res. 2014, 3, 523–532. [Google Scholar]
- Lewandowska, K.; Sionkowska, A.; Grabska, S.; Kaczmarek, B. Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan. Int. J. Biol. Macromol. 2016, 92, 371–376. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Castrillón, S.R.-V.; Lu, X.; Shaffer, D.L.; Elimelech, M. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. J. Memb. Sci. 2014, 450, 331–339. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.H.; Gong, Y.D.; Zhao, N.M.; Zhang, X.F. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002, 23, 2641–2648. [Google Scholar] [CrossRef]
- Shen, R.; Xu, W.; Xue, Y.; Chen, L.; Ye, H.; Zhong, E.; Ye, Z.; Gao, J.; Yan, Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif. Cellsnanomedicinebiotechnol. 2018, 46, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Baskar, D.; Sampath Kumar, T.S. Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydr. Polym. 2009, 78, 767–772. [Google Scholar] [CrossRef]
- Lima, P.A.L.; Resende, C.X.; De Almeida Soares, G.D.; Anselme, K.; Almeida, L.E. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 2013, 33, 3389–3395. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.A.; Jones, P.; Farrar, D.; Grant, D.M.; Scotchford, C.A. Human osteoblast cell spreading and vinculin expression upon biomaterial surfaces. J. Mol. Histol. 2007, 38, 491–499. [Google Scholar] [CrossRef] [PubMed]
Amine Groups (%) | ||
---|---|---|
25 °C | 150 °C | |
CHT film | 72.5 ± 3.8 | 54.9 ± 7.1 |
CHT-PEGDE1 | 56.5 ± 4.1 | 55.3 ± 3 |
CHT-PEGDE2 | 55.4 ± 5.6 | 52.3 ± 2.2 |
CHT-PEGDE3 | 53.4 ± 4.3 | 49.9 ± 5.2 |
CHT-GA | 51.5 ± 2.5 | 47.7 ± 1.9 |
Films | Td (°C) | % Weight Loss | T (°C) at 50% of Weight Loss | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25 °C | 150 °C | 25 °C | 150 °C | 25 °C | 150 °C | |||||
Td1 | Td2 | Td1 | Td2 | Td1 | Td2 | Td1 | Td2 | |||
CHT | 65 | 297 | 68 | 300 | 15 | 50 | 9 | 72 | 351 | 390 |
CHT-PEGDE 1 | 45 | 298 | 66 | 303 | 10 | 58 | 10 | 54 | 350 | 376 |
CHT-PEGDE 2 | 55 | 302 | 59 | 304 | 14 | 54 | 11 | 53 | 337 | 368 |
CHT-PEGDE 3 | 64 | 302 | 54 | 304 | 15 | 70 | 10 | 54 | 347 | 361 |
CHT-GA | 68 | 272 | 55 | 292 | 21 | 47 | 12 | 51 | 333 | 392 |
CrI% | ||
---|---|---|
Films | 25 °C | 150 °C |
CHT | 64.17 | 40.33 |
CHT-PEGDE 1 | 64.17 | 51.33 |
CHT-PEGDE 2 | 37.39 | 7.64 |
CHT-PEGDE 3 | 52.58 | 26.79 |
CHT-GA | 21.59 | 8.36 |
CHT | CHT-PEGDE1 | CHT-PEGDE2 | CHT-PEGDE3 | CHT-GA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 °C | 150 °C | 25 °C | 150 °C | 25 °C | 150 °C | 25 °C | 150 °C | 25 °C | 150 °C | |||||||||||
% | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX | XPS | EDX |
C | 70 ± 1 | 55 ± 4 | 70 ± 4 | 53 ± 5 | 72 ± 2 | 52 ± 2 | 68 ± 4 | 58 ± 7 | 70 ± 4 | 53 ± 1 | 69 ± 2 | 59 ± 4 | 67 ± 3 | 50 ± 1 | 70 ± 6 | 60 ± 6 | 68 ± 3 | 57 ± 1 | 72 ± 4 | 56 ± 7 |
O | 25 ± 2 | 37 ± 0 | 26 ± 4 | 41 ± 5 | 24 ± 3 | 41 ± 1 | 28 ± 3 | 40 ± 6 | 26 ± 4 | 41 ± 1 | 27 ± 4 | 40 ± 5 | 29 ± 2 | 44 ± 1 | 26 ± 4 | 39 ± 5 | 28 ± 3 | 37 ± 1 | 24 ± 2 | 39 ± 4 |
N | 5 ± 1 | 8 ± 1 | 4 ± 0 | 6 ± 1 | 4 ± 0 | 7 ± 1 | 4 ± 0 | 2 ± 1 | 4 ± 0 | 6 ± 0 | 4 ± 1 | 1 ± 0 | 4 ± 1 | 6 ± 0 | 4 ± 0 | 1 ± 0 | 4 ± 1 | 6 ± 0 | 4 ± 0 | 5 ± 1 |
Ra (nm) | Contact Angle (°) | |||||
---|---|---|---|---|---|---|
Film | 25 °C | 150 °C | 25 °C | 150 °C | ||
H2O | DMEM | H2O | DMEM | |||
CHT | 45.8 ± 5 | 75.9 ± 121 | 62 9 ± 3 | 72 ± 4 | 71 ± 5 | 66 ± 6 |
CHT-PEGDE1 | 44.3 ± 4 | 28.2 ± 8 | 66 ± 2 | 65 ± 4 | 63 ± | 57 ± 5 |
CHT-PEGDE2 | 64.1 ± 7 | 44.7 ± 11 | 70 ± 4 | 60 ± 4 | 72 ± 4 | 45 ± 4 |
CHT-PEGDE3 | 91.2 ± 5 | 16.5 ± 2 | 63 ± 7 | 56 ± 5 | 66 ± 4 | 62 ± 3 |
CHT-GA | 26.3 ± 6 | 103.7 ± 19 | 68 ± 2 | 56 ± 2 | 68 ± 2 | 58 ± 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuc-Gamboa, M.G.; Vargas-Coronado, R.F.; Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Escobar-García, D.M.; Pozos-Guillén, A.; San Román del Barrio, J. The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers 2019, 11, 1830. https://doi.org/10.3390/polym11111830
Chuc-Gamboa MG, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Escobar-García DM, Pozos-Guillén A, San Román del Barrio J. The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers. 2019; 11(11):1830. https://doi.org/10.3390/polym11111830
Chicago/Turabian StyleChuc-Gamboa, Martha Gabriela, Rossana Faride Vargas-Coronado, José Manuel Cervantes-Uc, Juan Valerio Cauich-Rodríguez, Diana María Escobar-García, Amaury Pozos-Guillén, and Julio San Román del Barrio. 2019. "The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan" Polymers 11, no. 11: 1830. https://doi.org/10.3390/polym11111830
APA StyleChuc-Gamboa, M. G., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Escobar-García, D. M., Pozos-Guillén, A., & San Román del Barrio, J. (2019). The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers, 11(11), 1830. https://doi.org/10.3390/polym11111830