Next Article in Journal
Optically Pumped Intensive Light Amplification from a Blue Oligomer
Next Article in Special Issue
Study of Waste Jute Fibre Panels (Corchorus capsularis L.) Agglomerated with Portland Cement and Starch
Previous Article in Journal
Linear and Nonlinear Dynamic Behavior of Polymer Micellar Assemblies Connected by Metallo-Supramolecular Interactions
Article

Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?

1
Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstraße 136a, 5431 Kuchl, Austria
2
Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria
3
Salzburg Center for Smart Materials, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria
4
Department of Land, Environment, Agriculture & Forestry, University of Padua, Via dell´Universitá 16, 35020 Legnaro, Italy
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(10), 1533; https://doi.org/10.3390/polym11101533
Received: 2 August 2019 / Revised: 6 September 2019 / Accepted: 10 September 2019 / Published: 20 September 2019
(This article belongs to the Special Issue Sustainable Polymers from Biomass)
Furfuryl alcohol (FA) and lactic acid (LA) are two of the most interesting biomolecules, easily obtainable from sugars and hence extremely attractive for green chemistry solutions. These substances undergo homopolymerization and they have been rarely considered for copolymerization. Typically, FA homopolymerizes exothermically in an acid environment producing inhomogeneous porous materials, but recent studies have shown that this reaction can be controlled and therefore we have implemented this process to trigger the copolymerization with LA. The mechanical tests have shown that the blend containing small amount of FA were rigid and the fracture showed patterns more similar to the one of neat polyfurfuryl alcohol (PFA). This LA-rich blend exhibited higher chloroform and water resistances, while thermal analyses (TG and DSC) also indicated a higher furanic character than expected. These observations suggested an intimate interconnection between precursors which was highlighted by the presence of a small band in the ester region of the solid state 13C–NMR, even if the FT-IR did not evidence any new signal. These studies show that these bioplastics are basically constituted of PLA and PFA homopolymers with some small portion of covalent bonds between the two moieties. View Full-Text
Keywords: Carbohydrate derivatives; sustainable macromolecules; bio-based materials; bio-resources; green resins; biopolymers Carbohydrate derivatives; sustainable macromolecules; bio-based materials; bio-resources; green resins; biopolymers
Show Figures

Graphical abstract

MDPI and ACS Style

Sommerauer, L.; Grzybek, J.; Elsaesser, M.S.; Benisek, A.; Sepperer, T.; Dachs, E.; Hüsing, N.; Petutschnigg, A.; Tondi, G. Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization? Polymers 2019, 11, 1533. https://doi.org/10.3390/polym11101533

AMA Style

Sommerauer L, Grzybek J, Elsaesser MS, Benisek A, Sepperer T, Dachs E, Hüsing N, Petutschnigg A, Tondi G. Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization? Polymers. 2019; 11(10):1533. https://doi.org/10.3390/polym11101533

Chicago/Turabian Style

Sommerauer, Lukas, Jakub Grzybek, Michael S. Elsaesser, Artur Benisek, Thomas Sepperer, Edgar Dachs, Nicola Hüsing, Alexander Petutschnigg, and Gianluca Tondi. 2019. "Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?" Polymers 11, no. 10: 1533. https://doi.org/10.3390/polym11101533

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop