Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. Sample Preparation
3. Results and Discussion
3.1. The Formation of Polyion Complex with PMVP41-PEO205 and Fluorescent Molecule HPTS
3.2. Detection of Anionic Surfactants Based on the Disassembly of the Ionic Self-Assembled Polyion Complex
3.3. Distinction and Quantitative Detection of Sodium Dodecylbenzenesulfonate
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kabanov, A.V.; Bronich, T.K.; Kabanov, V.A.; Yu, K.; Eisenberg, A. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J. Am. Chem. Soc. 1998, 120, 9941–9942. [Google Scholar] [CrossRef]
- Harada, A.; Kataoka, K. Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Ishihara, K.; Yusa, S.-I. Preparation of giant polyion complex vesicles (g-picsomes) with polyphosphobetaine shells composed of oppositely charged diblock copolymers. Chem. Lett. 2017, 46, 824–827. [Google Scholar] [CrossRef]
- Kulig, D.; Zimoch-Korzycka, A.; Jarmoluk, A.; Marycz, K. Study on alginate-chitosan complex formed with different polymers ratio. Polymers 2016, 8, 17. [Google Scholar] [CrossRef]
- Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular ph change. Angew. Chem. Int. Ed. 2003, 42, 4640–4643. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Kataoka, K. Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)−poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 1998, 31, 288–294. [Google Scholar] [CrossRef]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012, 64, 37–48. [Google Scholar] [CrossRef]
- Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; Ishii, T.; Kataoka, K. A protein nanocarrier from charge-conversion polymer in response to endosomal ph. J. Am. Chem. Soc. 2007, 129, 5362–5363. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N.; et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J. Am. Chem. Soc. 2014, 136, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Duro-Castano, A.; Conejos-Sanchez, I.; Vicent, M.J. Peptide-based polymer therapeutics. Polymers 2014, 6, 515–551. [Google Scholar] [CrossRef]
- Baulin, V.A.; Trizac, E. Self-assembly of spherical interpolyelectrolyte complexes from oppositely charged polymers. Soft Matter 2012, 8, 6755–6766. [Google Scholar] [CrossRef]
- Irigoyen, J.; Han, L.; Llarena, I.; Mao, Z.; Gao, C.; Moya, S.E. Responsive polyelectrolyte multilayers assembled at high ionic strength with an unusual collapse at low ionic strength. Macromol. Rapid Commun. 2012, 33, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, T.D.; Lau, K.H.A.; Abou-Kandil, A.I.; Caminade, A.-M.; Majoral, J.-P.; Knoll, W. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores. ACS Nano 2010, 4, 3909–3920. [Google Scholar] [CrossRef] [PubMed]
- Chelushkin, P.S.; Lysenko, E.A.; Bronich, T.K.; Eisenberg, A.; Kabanov, V.A.; Kabanov, A.V. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge. 2. Dynamic properties. J. Phys. Chem. B 2008, 112, 7732–7738. [Google Scholar] [CrossRef] [PubMed]
- Voets, I.K.; de Keizer, A.; Leermakers, F.A.M.; Debuigne, A.; Jerome, R.; Detrembleur, C.; Stuart, M.A.C. Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. Eur. Polym. J. 2009, 45, 2913–2925. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, J.B.; Yan, Y. Electrostatic polyion micelles with fluorescence and mri dual functions. Langmuir 2015, 31, 7926–7933. [Google Scholar] [CrossRef] [PubMed]
- Anraku, Y.; Kishimura, A.; Yamasaki, Y.; Kataoka, K. Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J. Am. Chem. Soc. 2013, 135, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Ishihara, K.; Kappl, M.; Fujii, S.; Nakamura, Y.; Yusa, S. Polyion complex vesicles with solvated phosphobetaine shells formed from oppositely charged diblock copolymers. Polymers 2017, 9, 15. [Google Scholar] [CrossRef]
- Taabache, S.; Bertin, A. Vesicles from amphiphilic dumbbells and janus dendrimers: Bioinspired self-assembled structures for biomedical applications. Polymers 2017, 9, 36. [Google Scholar] [CrossRef]
- Shin, K.; Rafailovich, M.H.; Sokolov, J.; Chang, D.M.; Cox, J.K.; Lennox, R.B.; Eisenberg, A.; Gibaud, A.; Huang, J.; Hsu, S.L. Observation of surface ordering of alkyl side chains in polystyrene/polyelectrolytes diblock copolymer langmuir films. Langmuir 2001, 17, 4955–4961. [Google Scholar] [CrossRef]
- Jha, P.K.; Desai, P.S.; Li, J.; Larson, R.G. Ph and salt effects on the associative phase separation of oppositely charged polyelectrolytes. Polymers 2014, 6, 1414–1436. [Google Scholar] [CrossRef]
- Xu, L.M.; Jiang, L.X.; Drechsler, M.; Sun, Y.; Liu, Z.R.; Huang, J.B.; Tang, B.Z.; Li, Z.B.; Stuart, M.A.C.; Yan, Y. Self-assembly of ultralong polyion nanoladders facilitated by ionic recognition and molecular stiffness. J. Am. Chem. Soc. 2014, 136, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.Y.; Wu, Z.; Yan, Y.; Wang, J.D.; Huang, J.B. Suppressing singlet oxygen formation from 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin using polyion complex micelles. RSC Adv. 2015, 5, 17253–17256. [Google Scholar] [CrossRef]
- Chen, X.; Kang, S.; Kim, M.J.; Kim, J.; Kim, Y.S.; Kim, H.; Chi, B.; Kim, S.J.; Lee, J.Y.; Yoon, J. Thin-film formation of imidazolium-based conjugated polydiacetylenes and their application for sensing anionic surfactants. Angew. Chem. Int. Ed. 2010, 49, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Olkowska, E.; Polkowska, Z.; Namiesnik, J. Analytics of surfactants in the environment: Problems and challenges. Chem. Rev. 2011, 111, 5667–5700. [Google Scholar] [CrossRef] [PubMed]
- Di, C.A.; Samperi, R.; Marcomini, A. Monitoring aromatic surfactants and their biodegradation intermediates in raw and treated sewages by solid-phase extraction and liquid chromatography. Environ. Sci. Technol. 1994, 28, 850–858. [Google Scholar]
- Corcia, A.D.; Marchetti, M.; Samperi, R.; Marcomini, A. Liquid chromatographic determination of linear alkylbenzenesulfonates in aqueous environmental samples. Anal. Chem. 1991, 63, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, Z.; Avram, V.; Marincas, O.; Petrov, P.; Ternes, T. The determination of the linear alkylbenzene sulfonate isomers in water samples by gas-chromatography/mass spectrometry. J. Chromatogr. A 2011, 1218, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.H.; Tsai, P.C. Determination of alkyltrimethylammonium chlorides in river water by gas chromatography/ion trap mass spectrometry with electron impact and chemical ionization. Anal. Chem. 2003, 75, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Gerlache, M.; Sentürk, Z.; Viré, J.C.; Kauffmann, J.M. Potentiometric analysis of ionic surfactants by a new type of ion-selective electrode. Anal. Chim. Acta 1997, 349, 59–65. [Google Scholar] [CrossRef]
- Heinig, K.; Vogt, C. Determination of surfactants by capillary electrophoresis. Electrophoresis 1999, 20, 3311–3328. [Google Scholar] [CrossRef]
- Kawase, J.; Nakae, A.; Yamanaka, M. Determination of anionic surfactants by flow injection analysis based on ion-pair extraction. Anal. Chem. 1979, 51, 1640–1643. [Google Scholar] [CrossRef]
- Qian, J.; Qian, X.; Xu, Y. Selective and sensitive chromo- and fluorogenic dual detection of anionic surfactants in water based on a pair of “on–off–on” fluorescent sensors. Chem. Eur. J. 2009, 15, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Coll, C.; Casasus, R.; Aznar, E.; Marcos, M.D.; Martinezmanez, R.; Sancenon, F.; Soto, J.; Amoros, P. Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun. 2007, 1957–1959. [Google Scholar] [CrossRef]
- Nakashima, H.; Yoshida, N. Fluorescent molecular sensing for various types of surfactants using amino-β-cyclodextrins bearing naphthalene chromophore. Chem. Lett. 2006, 35, 1168–1169. [Google Scholar] [CrossRef]
- Stroud, J.L.; Paton, G.I.; Semple, K.T. Microbe-aliphatic hydrocarbon interactions in soil: Implications for biodegradation and bioremediation. J. Appl. Microbiol. 2007, 102, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, P.; Mahajan, A.; Kumar, S. Aggregation induced emission enhancement in ionic self-assembled aggregates of benzimidazolium based cyclophane and sodium dodecylbenzenesulfonate. Org. Lett. 2013, 15, 3400–3403. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Malik, A.H.; Iyer, P.K. Highly precise detection, discrimination, and removal of anionic surfactants over the full ph range via cationic conjugated polymer: An efficient strategy to facilitate illicit-drug analysis. ACS Appl. Mater. Interfaces 2015, 7, 3189–3198. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Colorimetric sensing of non-ionic and cationic surfactants using a versatile anionic poly(3,4-propylenedioxythiophene) derivative. Anal. Methods 2015, 7, 2800–2805. [Google Scholar] [CrossRef]
- Meng, G.; Luochao, W.; Junjian, C.; Shiwu, L.; Guanhai, L.; Lin, W.; Yingjun, W.; Li, R.; Anjun, Q.; Zhong, T.B. Aggregation-induced emission active probe for light-up detection of anionic surfactants and wash-free bacterial imaging. Chem. A Eur. J. 2016, 22, 5107–5112. [Google Scholar]
- Sandhu, S.; Kumar, R.; Tripathi, N.; Singh, H.; Singh, P.; Kumar, S. Lab-on-a-molecule elaboration for fluorescence based discrimination of commercial surfactants sodium dodecyl sulfate and sodium dodecylbenzenesulfonate. Sens. Actuators B Chem. 2017, 241, 8–18. [Google Scholar] [CrossRef]
- De Borba, E.B.; Amaral, C.L.C.; Politi, M.J.; Villalobos, R.; Baptista, M.S. Photophysical and photochemical properties of pyranine/methyl viologen complexes in solution and in supramolecular aggregates: A switchable complex. Langmuir 2000, 16, 5900–5907. [Google Scholar] [CrossRef]
- Biesalski, M.; Johannsmann, D.; Rühe, J. Electrolyte-induced collapse of a polyelectrolyte brush. J. Chem. Phys. 2004, 120, 8807–8814. [Google Scholar] [CrossRef] [PubMed]
- An, Y.X.; Bai, H.; Li, C.; Shi, G.Q. Disassembly-driven colorimetric and fluorescent sensor for anionic surfactants in water based on a conjugated polyelectrolyte/dye complex. Soft Matter 2011, 7, 6873–6877. [Google Scholar] [CrossRef]
- Li, C.; Numata, M.; Takeuchi, M.; Shinkai, S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of atp. Angew. Chem. 2005, 44, 6371–6374. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Kakizawa, Y. Study on the interaction between polyelectrolytes and oppositely charged ionic surfactants. Solubilized state of the complexes in the postprecipitation region. Colloid Polym. Sci. 2002, 280, 18–23. [Google Scholar] [CrossRef]
- Kuhn, P.S.; Levin, Y.; Barbosa, M.C. Complex formation between polyelectrolytes and ionic surfactants. Chem. Phys. Lett. 1998, 298, 51–56. [Google Scholar] [CrossRef]
- Von Ferber, C.; Lowen, H. Complexes of polyelectrolytes and oppositely charged ionic surfactants. J. Chem. Phys. 2003, 118, 10774–10779. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Li, Y.G.; Li, C.; Shi, G.Q. Disassembly of conjugated polyelectrolyte aggregates and their application for colorimetric detection of surfactants in water. Chem. Commun. 2010, 46, 8639–8641. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.Y.; Bai, H.; Li, C.; Shi, G.Q. Analyte-induced aggregation of conjugated polyelectrolytes: Role of the charged moieties and its sensing application. Chem. Commun. 2010, 46, 5094–5096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Zhao, C.-F.; Li, Y.; Liu, X.-M.; Yu, A.; Ruan, W.-J.; Bu, X.-H. Two hexaazatriphenylene based selective off–on fluorescent chemsensors for cadmium(ii). Talanta 2014, 119, 632–638. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Hu, C.; Huang, J.; Yan, Y. Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate. Polymers 2018, 10, 657. https://doi.org/10.3390/polym10060657
Liu S, Hu C, Huang J, Yan Y. Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate. Polymers. 2018; 10(6):657. https://doi.org/10.3390/polym10060657
Chicago/Turabian StyleLiu, Shuai, Cun Hu, Jianbin Huang, and Yun Yan. 2018. "Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate" Polymers 10, no. 6: 657. https://doi.org/10.3390/polym10060657
APA StyleLiu, S., Hu, C., Huang, J., & Yan, Y. (2018). Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate. Polymers, 10(6), 657. https://doi.org/10.3390/polym10060657