Laser-Textured Rubbers with Carbon Nanotube Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rubber Samples
2.2. Surface Treatment
2.3. FTIR Spectroscopic Analysis
2.4. Evaluation of Laser Modification
3. Results and Discussion
3.1. Evaluation of the Rubber Surface Condition after Laser Treatment
3.2. Contact Angle of the Rubber Samples after Laser Surface Treatment
3.3. Scanning Electron Microscopy Analysis of the Surfaces of Selected Samples
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Wenzel, R.N. Resistance of solid surface to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Bormashenko, E. Why does the Cassie–Baxter equation apply? Colloids Surf. A Physicochem. Eng. Asp. 2008, 324, 47–50. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces. Langmuir 2008, 24, 6262–6269. [Google Scholar] [CrossRef] [PubMed]
- Berberoglou, M.; Zorba, V.; Stratakis, E.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S.H.; Fotakis, C. Bio-inspired water repellent surfaces produced by ultrafastlaser structuring of silicon. Appl. Surf. Sci. 2009, 255, 5425–5429. [Google Scholar] [CrossRef]
- Milionis, A.; Giannuzzi, R.; Bayer, I.S.; Papadopoulou, E.L.; Ruffilli, R.; Manca, M.; Athanassiou, A. Self-cleaning organic/inorganic photo-sensors. ACS Appl. Mater. Interfaces 2013, 5, 7139–7145. [Google Scholar] [CrossRef] [PubMed]
- Milionis, A.; Krishnan, K.G.; Loth, E. Hemolymph drop impact outcomes on sur-faces with varying wettability. Appl. Surf. Sci. 2015, 345, 36–43. [Google Scholar] [CrossRef]
- Milionis, A.; Fragouli, D.; Brandi, F.; Liakos, I.; Barroso, S.; Ruffilli, R.; Athanassiou, A. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation. Appl. Surf. Sci. 2015, 351, 74–82. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, J.; Wang, Q.; Chen, Q.; Ding, J. Verification of icephobic/anti-icingproperties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 2013, 5, 3370–3381. [Google Scholar] [CrossRef] [PubMed]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Raniszewski, G.; Pyc, M.; Kolacinski, Z. Optimization of magnetic field-assisted synthesis of carbon nanotubes for sensing applications. Sensors 2014, 10, 18474–18483. [Google Scholar] [CrossRef] [PubMed]
- Raniszewski, G.; Miaskowski, A.; Wiak, S. The Application of Carbon Nanotubes in Magnetic Fluid Hyperthermia. J. Nanomater. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.; Dong, X.; Yin, K.; Zhang, F.; Xie, Z.; Chu, D.; Duan, J. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 2018, 102, 25–31. [Google Scholar] [CrossRef]
- He, A.; Liu, W.; Xue, W.; Yang, H.; Cao, Y. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing. Appl. Surf. Sci. 2018, 434, 120–125. [Google Scholar] [CrossRef]
- Kasprzyk, L.; Tomczewski, A.; Bednarek, K.; Bugała, A. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2017; pp. 1–6. [Google Scholar]
- Li, B.; Li, H.; Huang, L.; Ren, N.; Kong, X. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity. Appl. Surf. Sci. 2016, 389, 585–593. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Walczak, M.; Pawlak, R. Laser modification of electrical properties of conductive layers made on teflon substrates. Przegląd Elektrotech. 2014, 90, 127–130. [Google Scholar]
- Pawlak, R.; Korzeniewska, E.; Koneczny, C.; Hałgas, B. Properties of thin metal layers deposited on textile composites by using the PVD method for textronic applications. AUTEX Res. J. 2017, 17, 3. [Google Scholar] [CrossRef]
- Pawlak, R.; Lebioda, M.; Tomczyk, M.; Rymaszewski, J.; Korzeniewska, E.; Walczak, M. Surface heat sources on textile composites—Modeling and implementation. In Proceedings of the 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland, 14–16 September 2017. [Google Scholar]
- Khorasani, M.T.; Mirzadeh, H.; Kermani, Z. Wettability of porous polydimethylsiloxane surface: Morphology study. Appl. Surf. Sci. 2005, 242, 339–345. [Google Scholar] [CrossRef]
- Song-Hua, G.; Li-Hua, G.; Ke-Sheng, Z. Super-hydrophobicity and oleophobicity of silicone rubber modified by CF4 radio frequency plasma. Appl. Surf. Sci. 2011, 257, 4945–4950. [Google Scholar]
- Sun, D.L.; Hong, R.Y.; Wang, F.; Liu, J.Y.; Rajesh Kumar, M. Synthesis and modification of carbon nanomaterials via AC arc and dielectric barrier discharge plasma. Chem. Eng. J. 2016, 283, 9–20. [Google Scholar] [CrossRef]
- Khorasani, M.T.; Moemen Bellah, S.; Mirzadeh, H.; Sadatnia, B. Effect of surface charge and hydrophobicity of polyurethanes and silicone rubbers on L929 cells response. Colloids Surf. B Biointerfaces 2006, 51, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, S.; Liu, J.; Huang, S.; Xia, G.; Song, J.; Xu, W.; Sun, J.; Liu, X. Surface modification of tube inner wall by transferred atmospheric pressure plasma. Appl. Surf. Sci. 2016, 389, 967–976. [Google Scholar] [CrossRef]
- He, L.; Ma, Y.; Liu, Q.; Mu, Y. Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 2016, 120, 403–407. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Sokolov, B.O.; Stepanov, G.V.; Kramarenko, E.Y. Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil/water separation. J. Magn. Magn. Mater. 2018, 459, 268–271. [Google Scholar] [CrossRef]
- Kasprzyk, L.; Tomczewski, A.; Bednarek, K. The distribution of an electromagnetic and optimization computation of electrical systems by using multi-core processors. Przeglad Elektrotech. 2011, 87, 82–85. [Google Scholar]
- Wosiak, A.; Lipiński, P.; Kaźmierski, M.; Kersz, I. Optimisation of the cooling unit in the system for supervising the condition of large power transformers. Przegląd Elektrotech. 2009, 85, 166–169. [Google Scholar]
Mixture | Explanations |
---|---|
SBR0 | SBR without filler |
SBR/CB | SBR with the addition of soot |
SBR/MWCNT | SBR with the addition of carbon nanotubes |
SBR/MWCNT/CB | SBR with the addition of carbon nanotubes and soot |
NBR0 | NBR without filler |
NBR/MWCNT/CB | NBR with the addition of carbon nanotubes and soot |
Composition Abbreviation | Rubber | CB | MWCNT | ZnO | Stearin | CBS | Sulphur |
---|---|---|---|---|---|---|---|
SBR/MWCNT/CB | 100 | 20 | 5 | 5 | 1 | 2 | 2 |
SBR/CB 50 | 100 | 50 | - | 5 | 1 | 2 | 2 |
SBR/MWCNT 50 | 100 | - | 50 | 5 | 1 | 2 | 2 |
NBR/MWCN/CB | 100 | 20 | 5 | 5 | 1 | 2 | 2 |
SBR/CB 50 | Power of the Beam (W) | Beam Pulse Energy (mJ) | Hatching (mm) | Contact Angle (°) | ||
---|---|---|---|---|---|---|
Before Laser Treatment | After Laser Treatment | Resulting Difference | ||||
1. | 3.0 | 0.0330 | 0.02 | 99 | 107 | 8 |
2. | 3.5 | 0.0385 | 0.02 | 107 | 8 | |
3. | 3.0 | 0.0330 | 0.04 | 128 | 29 | |
4. | 3.5 | 0.0385 | 0.04 | 132 | 33 |
SBR/MWCNT 50 | Power of the Beam (W) | Beam Pulse Energy (mJ) | Hatching (mm) | Contact Angle (°) | ||
---|---|---|---|---|---|---|
Before Laser Treatment | After Laser Treatment | Resulting Difference | ||||
1. | 3.5 | 0.0385 | 0.04 | 91 | 140 | 49 |
2. | 4.0 | 0.044 | 0.05 | 133 | 42 | |
3. | 4.5 | 0.0495 | 0.05 | 147 | 56 | |
4. | 5.0 | 0.055 | 0.05 | 144 | 53 |
NBR/MWCNT/CB | Beam Power (W) | Beam Pulse Energy (µJ) | Hatching (mm) | Contact Angle (°) | ||
---|---|---|---|---|---|---|
Before Laser Modification | After Laser Modification | Resulting Difference | ||||
1. | 2.3 | 25.3 | 0.02 | 69 | 93 | 24 |
2. | 2.5 | 27.5 | 94 | 25 | ||
3. | 3.0 | 33 | 116 | 47 | ||
4. | 3.3 | 36.3 | 119 | 50 | ||
5. | 3.6 | 39.6 | 122 | 53 | ||
6. | 4.0 | 44 | 124 | 55 | ||
7. | 4.2 | 46.2 | 125 | 56 | ||
8. | 4.5 | 49.5 | 126 | 57 |
SBR/MWCNT/CB 5:20 | Beam Power (W) | Beam Pulse Energy (µJ) | Hatching (mm) | Contact Angle (°) | ||
---|---|---|---|---|---|---|
Before Laser Modification | After Laser Modification | The Resulting Difference | ||||
1. | 2.3 | 25.3 | 0.02 | 71 | 93 | 22 |
2. | 2.5 | 27.5 | 99 | 28 | ||
3. | 3.0 | 33 | 106 | 35 | ||
4. | 3.3 | 36.3 | 107 | 36 | ||
5. | 3.6 | 39.6 | 113 | 42 | ||
6. | 4.0 | 44 | 119 | 48 | ||
7. | 4.2 | 46.2 | 122 | 51 | ||
8. | 4.5 | 49.5 | 126 | 55 | ||
9. | 5.0 | 55 | 129 | 58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciński, M.; Korzeniewska, E.; Tomczyk, M.; Pawlak, R.; Bieliński, D.; Gozdek, T.; Kałuzińska, K.; Walczak, M. Laser-Textured Rubbers with Carbon Nanotube Fillers. Polymers 2018, 10, 1091. https://doi.org/10.3390/polym10101091
Siciński M, Korzeniewska E, Tomczyk M, Pawlak R, Bieliński D, Gozdek T, Kałuzińska K, Walczak M. Laser-Textured Rubbers with Carbon Nanotube Fillers. Polymers. 2018; 10(10):1091. https://doi.org/10.3390/polym10101091
Chicago/Turabian StyleSiciński, Mariusz, Ewa Korzeniewska, Mariusz Tomczyk, Ryszard Pawlak, Dariusz Bieliński, Tomasz Gozdek, Karolina Kałuzińska, and Maria Walczak. 2018. "Laser-Textured Rubbers with Carbon Nanotube Fillers" Polymers 10, no. 10: 1091. https://doi.org/10.3390/polym10101091
APA StyleSiciński, M., Korzeniewska, E., Tomczyk, M., Pawlak, R., Bieliński, D., Gozdek, T., Kałuzińska, K., & Walczak, M. (2018). Laser-Textured Rubbers with Carbon Nanotube Fillers. Polymers, 10(10), 1091. https://doi.org/10.3390/polym10101091