Synthesis, Single Crystal X-Ray Structure, Theoretical Studies of Triple-{MnIII-Schiff-Base}-Decorated Molybdate
Abstract
:1. Introduction
2. Experimental
2.1. General
2.2. Synthesis
2.3. Crystal Structure Determination
3. Results and Discussion
3.1. Crystal Structure
3.2. Porous Analysis
3.3. Frontier Molecular Orbitals
3.4. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mirzaei, M.; Eshtiagh-Hosseini, H.; Alipour, M.; Frontera, A. Recent developments in the crystal engineering of diverse coordination modes (0–12) for Keggin-type polyoxometalates in hybrid inorganic–organic architectures. Coordin. Chem. Rev. 2014, 275, 1–18. [Google Scholar] [CrossRef]
- Miras, H.N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Luo, T.; Zhang, J.; Li, X.-X.; Lv, S.-F.; Peng, J.-J.; Li, M.; Li, W.; Nakamura, T. Two Supramolecular Inorganic—Organic Hybrid Crystals Based on Keggin Polyoxometalates and Crown Ethers. Crystals 2018, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Sosa, J.D.; Bennett, T.F.; Nelms, K.J.; Liu, B.M.; Tovar, R.C.; Liu, Y. Metal–Organic Framework Hybrid Materials and Their Applications. Crystals 2018, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.C.; Sutar, A.K. Catalytic activities of Schiff base transition metal complexes. Coordin. Chem. Rev. 2008, 252, 1420–1450. [Google Scholar] [CrossRef]
- Miyasaka, H.; Saitoh, A.; Abe, S. Magnetic assemblies based on Mn(III) salen analogues. Coord. Chem. Rev. 2007, 251, 2622–2664. [Google Scholar] [CrossRef]
- Fu, Z.; Liao, H.; Xiong, D.; Zhang, Z.; Yan, J.; Yin, D. A highly-efficient and environmental-friendly method for the preparation of Mn(III)–Salen complexes encapsulated HMS by using microwave irradiation. Microporous Mesoporous Mater. 2007, 106, 298–303. [Google Scholar] [CrossRef]
- Watanabe, T.; Owada, S.H.; Kawakami, H.; Nagaoka, S.; Murakami, E.; Ishiuchi, A.; Enomoto, T.; Jinnouchi, Y.; Sakurai, J.; Tobe, N. Protective effects of MnM2Py4P and Mn-salen against small bowel ischemia/reperfusion injury in rats using an in vivo and an ex vivo electron paramagnetic resonance technique with a spin probe. Transplant. Proc. 2007, 39, 3002–3006. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Day, C.S.; Lachgar, A. Self-assembly and solvent-mediated structural transformation of one-dimensional cluster-based coordination polymer. CrystEngComm 2011, 13, 133–137. [Google Scholar] [CrossRef]
- Donmez, A.; Coban, M.B.; Kara, H. Cyan-Blue Luminescence and Antiferromagnetic Coupling of CN-Bridged Tetranuclear Complex Based on Manganese(III) Schiff Base and Hexacyanoferrate(III). J. Clust. Sci. 2018, 29, 951–958. [Google Scholar] [CrossRef]
- Wang, T.T.; Bao, S.S.; Ren, M.; Cai, Z.S.; Zheng, Z.H.; Xu, Z.L.; Zheng, L.M. Assembly of {Mn2(salen)2}2+ Dimers by Cyclic V 4 O 12 4− Clusters: A 3 D Compound with Open-Framework Structure Exhibiting Slow Magnetization Relaxation. Chem. Asian J. 2013, 8, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chen, W.L.; Liu, D.; Liang, C.; Li, Y.G.; Lin, S.W.; Wang, E. New class of organic-inorganic hybrid aggregates based on polyoxometalates and Metal-Schiff-base. Dalton Trans. 2011, 40, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.-X.; Tan, H.-Q.; Liu, D.; Zhang, Z.-M.; Wang, E.-B. Two organic–inorganic hybrid materials based on the penta-nuclear {MMn4} (M = W and Mo) heterometallic clusters and Schiff-base ligands. Inorg. Chem. Commun. 2013, 29, 49–52. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Hu, X.; Lu, J.; Wang, H. A New 1-D Organic–Inorganic Hybrid Dimer Chain Complex Constructed by Manganese(III)-(Schiff-base) and [WO4]2− Unit. J. Clust. Sci. 2015, 26, 1203–1213. [Google Scholar] [CrossRef]
- Suzuki, K.; Sato, R.; Mizuno, N. Reversible switching of single-molecule magnet behaviors by transformation of dinuclear dysprosium cores in polyoxometalates. Chem. Sci. 2013, 4, 596–600. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.-G.; Wang, Y.-H.; Clérac, R.; Lu, Y.; Wang, E.-B. Polyoxometalate-based {MnIII2}–Schiff base composite materials exhibiting single-molecule magnet behaviour. Chem. Commun. 2009, 5743–5745. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Kosaka, W.; Hayashi, Y.; Miyasaka, H. Coulombic aggregations of Mn III salen-type complexes and keggin-type polyoxometalates: Isolation of Mn 2 single-molecule magnets. Inorg. Chem. 2012, 51, 4824–4832. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.-N.; Wang, X.-L.; Yang, G.-S.; Wang, S.; Shao, K.-Z.; Su, Z.-M. Construction and property investigation of inorganic–organic hybrid materials based on metal–salens and Keggin polyoxometalates. Inorg. Chim. Acta 2012, 390, 135–142. [Google Scholar] [CrossRef]
- Meng, X.; Qin, C.; Wang, X.L.; Su, Z.M.; Li, B.; Yang, Q.H. Chiral salen-metal derivatives of polyoxometalates with asymmetric catalytic and photocatalytic activities. Dalton Trans. 2011, 40, 9964–9966. [Google Scholar] [CrossRef]
- Lin, S.; Wu, Q.; Tan, H.; Wang, E. A new organic–inorganic hybrid based on Mn–salen and decavanadate. J. Coord. Chem. 2011, 64, 3661–3669. [Google Scholar] [CrossRef]
- Shyu, H.L.; Wei, H.H.; Wang, Y. Structure and magnetic properties of dinuclear [Mn(III)(salen)(H2O)]2(ClO4)2 and polynuclear [Mn(III)(salen)(NO3)]n. Inorg. Chim. Acta 1999, 290, 8–13. [Google Scholar] [CrossRef]
- Boudreaux, E.A.L.; Mulay, L.N. Theory and Applications of Molecular Paramagnetism; Boudreaux, E.A., Mulay, L.N., Eds.; Wiley-Interscience: New York, NY, USA, 1976; 510p. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2010, 42, 339–341. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. 2015, 71, 9–18. [Google Scholar]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Cambridge Crystallographic Data Centre. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 2 December 2019).
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Section B 1985, 41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Barbour, L.J. Crystal porosity and the burden of proof. Chem Commun. 2006, 11, 1163–1168. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Parameter | Value I |
---|---|
Formula | C53H55Mn3MoN6O17 |
Mr (g mol−1) | 1326.89 |
Temperature/K | 293(2) |
Wavelength/Å | 0.71073 |
Crystal system | hexagonal |
space group | P63/m |
a/Å | 14.027(5) |
b/Å | 14.027(5) |
c/Å | 17.487(5) |
Volume/Å3 | 1142.6(3) |
Z | 0.16667 |
Calculated density | 1.442 Mg/m3 |
Absorption coefficient | 0.896 mm−1 |
F(000) | 1320 |
Theta range for data collection | 3.13 to 25.00 deg |
Limiting indices | −16 <= h <= 16, −16 <= k <= 16, −20 <= l <= 19 |
Reflections collected/unique | 21,315/1822 [R(int) = 0.0425] |
Completeness to theta = 25.00 | 99.7 % |
Refinement method | Full-matrix least-squares on F2 |
Goodness-of-fit on F2 | 1.203 |
Final R indices [I > 2sigma(I)] | R1 = 0.0543, wR2 = 0.1842 |
R indices (all data) | R1 = 0.0584, wR2 = 0.1871 |
Largest diff. peak and hole, e.Å−3 | 0.713 and −0.710 |
Mn1 2.97 ro = 1.76 Åa | Mo1 6.50 ro = 1.907 Åa |
---|---|
Mn1−O4 1.878 d = 2.147(4) | Mo1−O3 1.856 d = 1.685(13) |
Mn1−O4 2.386 d = 1.981(7) | Mo1−O2#2 1.549 d = 1.745(4) |
Mn1−N1 2.024 d = 2.020(7) | Mo1−O2#1 1.549 d = 1.745(4) |
Mn1−N1#3 2.024 d = 2.043(7) | Mo1−O2#3 1.549 d = 1.745(4) |
Mn1−O1 2.146 d = 2.055(7) | |
Mn1−O2 2.386 d = 2.067(7) | |
Symmetry code: #1 −x + y − 1, −x − 1, −z + 1/2; #2 −y − 1, x − y,z; #3 x,y, −z + 1/2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.-C.; Wu, Q.; Lei, Y.; Sun, J.-R.; Jiang, F.; Xu, Y.; Xu, X.-D.; Li, T. Synthesis, Single Crystal X-Ray Structure, Theoretical Studies of Triple-{MnIII-Schiff-Base}-Decorated Molybdate. Crystals 2019, 9, 657. https://doi.org/10.3390/cryst9120657
Xiao J-C, Wu Q, Lei Y, Sun J-R, Jiang F, Xu Y, Xu X-D, Li T. Synthesis, Single Crystal X-Ray Structure, Theoretical Studies of Triple-{MnIII-Schiff-Base}-Decorated Molybdate. Crystals. 2019; 9(12):657. https://doi.org/10.3390/cryst9120657
Chicago/Turabian StyleXiao, Jian-Chang, Qiong Wu, Yuan Lei, Jin-Rong Sun, Fang Jiang, Yan Xu, Xin-Di Xu, and Tianyu Li. 2019. "Synthesis, Single Crystal X-Ray Structure, Theoretical Studies of Triple-{MnIII-Schiff-Base}-Decorated Molybdate" Crystals 9, no. 12: 657. https://doi.org/10.3390/cryst9120657
APA StyleXiao, J.-C., Wu, Q., Lei, Y., Sun, J.-R., Jiang, F., Xu, Y., Xu, X.-D., & Li, T. (2019). Synthesis, Single Crystal X-Ray Structure, Theoretical Studies of Triple-{MnIII-Schiff-Base}-Decorated Molybdate. Crystals, 9(12), 657. https://doi.org/10.3390/cryst9120657