The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale
Abstract
:1. Introduction
2. The Design and Main Parameters of the DN-6 Diffractometer
3. The High-Pressure Equipment of the DN-6
4. An Overview of the Scientific Research at the DN-6 Diffractometer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mao, H.-K.; Chen, B.; Chen, J.; Li, K.; Lin, J.-F.; Yang, W.; Zheng, H. Recent advances in high-pressure science and technology. Matter Radiat. Extremes 2016, 1, 59–75. [Google Scholar] [CrossRef]
- Izyumov, Y.A. Magnetic Neutron Diffraction; Springer: Berlin, Germany, 1970; p. 598. ISBN 978-1-4684-0712-9. [Google Scholar]
- Dubrovinsky, L.; Dubrovinskaia, N.; Prakapenka, V.B.; Abakumov, A.M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 2012, 3, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.A.; Abacumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.B.; et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2016, 2, e1600341. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, M. Future directions in high-pressure neutron diffraction. J. Phys. Condens. Matter 2016, 27, 153201. [Google Scholar] [CrossRef] [PubMed]
- Mirebeau, I. Magnetic neutron diffraction under high pressure. C. R. Phys. 2007, 8, 737–744. [Google Scholar] [CrossRef]
- Klotz, S. Techniques in High Pressure Neutron Scattering; CRC Press: Boca Raton, FL, USA, 2016; p. 276. ISBN 9781138199217. [Google Scholar]
- Belushkin, A.V.; Kozlenko, D.P.; Rogachev, A.V. Synchrotron and neutron-scattering methods for studies of properties of condensed matter: Competition or complementarity? J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2011, 5, 828–855. [Google Scholar] [CrossRef]
- Glazkov, V.P.; Naumov, I.V.; Somenkov, V.A.; Shilshtein, S.Sh. Superpositional many-detector system and neutron diffraction of microsamples. Nucl. Instrum. Methods Phys. Res. Sect. A 1988, 264, 367–374. [Google Scholar] [CrossRef]
- Bull, C.L.; Funnell, N.P.; Tucker, M.G.; Hull, S.; Francis, D.J.; Marshall, W.G. PEARL: The high pressure neutron powder diffractometer at ISIS. High Press. Res. 2016, 36, 493–511. [Google Scholar] [CrossRef]
- Klotz, S.; Strässle, T.; Rousse, G.; Hamel, G.; Pomjakushin, V. Angle-dispersive neutron diffraction under high pressure to 10 GPa. Appl. Phys. Lett. 2005, 86, 031917. [Google Scholar] [CrossRef]
- Klotz, S.; Strässle, T.; Lebert, B.; d’Astuto, M.; Hansen, T. High pressure neutron diffraction to beyond 20 GPa and below 1.8 K using Paris-Edinburgh load frames. High Press. Res. 2016, 36, 73–78. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Xu, H.; Lokshin, K.A.; He, D.; Qian, J.; Pantea, C.; Daemen, L.L.; Vogel, S.C.; Ding, Y.; et al. High-pressure neutron diffraction studies at LANSCE. Appl. Phys. A 2010, 99, 585–599. [Google Scholar] [CrossRef]
- Arima, H.; Hattori, T.; Komatsu, K.; Abe, J.; Utsumi, W.; Kagi, H.; Suzuki, A.; Suzuya, K.; Kamiyama, T.; Arai, M.; et al. Designing PLANET: Neutron beamline for high-pressure material science at J-PARC. J. Phys. Conf. Ser. 2010, 215, 012025. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, R.; Yagi, T.; Gotou, H.; Komatsu, K.; Kagi, H. An opposed-anvil-type apparatus with an optical window and a wide-angle aperture for neutron diffraction. High Press. Res. 2012, 32, 430–441. [Google Scholar] [CrossRef]
- Boehler, R.; Molaison, J.J.; Haberl, B. Novel diamond cells for neutron diffraction using multi-carat CVD anvils. Rev. Sci. Instrum. 2017, 88, 083905. [Google Scholar] [CrossRef] [PubMed]
- Somenkov, V.A. High-pressure neutron scattering over the ages. J. Phys. Condens. Matter 2005, 17, S2991–S3003. [Google Scholar] [CrossRef]
- Glazkov, V.P.; Goncharenko, I.N.; Irodova, V.A.; Somenkov, V.A.; Shilstein, S.S.; Besedin, S.P.; Makarenko, I.N.; Stishov, S.M. Neutron diffraction study of molecular deuterium equation of state at high pressure. Z. Phys. Chem. 1989, 163, 509–514. [Google Scholar] [CrossRef]
- Goncharenko, I.N.; Mirebeau, I.; Ochiai, A. Magnetic neutron diffraction under pressures up to 43 GPa. Study of the EuX and GdX compounds. Hyperfine Interact. 2000, 128, 225–244. [Google Scholar] [CrossRef]
- Shvetsov, V.N. Neutron sources at the frank laboratory of neutron physics of the joint institute for nuclear research. Quantum Beam Sci. 2017, 1, 6. [Google Scholar] [CrossRef]
- Aksenov, V.L.; Balagurov, A.M.; Glazkov, V.P.; Kozlenko, D.P.; Naumov, I.V.; Savenko, B.N.; Sheptyakov, D.V.; Somenkov, V.A.; Bulkin, A.P.; Kudryashev, V.A.; et al. DN-12 time-of-flight high-pressure neutron spectrometer for investigation of microsamples. Phys. B: Condens. Matter 1999, 265, 258–262. [Google Scholar] [CrossRef]
- Kozlenko, D.P.; Savenko, B.N.; Glazkov, V.P.; Somenkov, V.A. Neutron scattering investigations of structure and dynamics of materials under high pressure at IBR-2 pulsed reactor. Neutron News 2005, 16, 13–15. [Google Scholar] [CrossRef]
- Besedin, S.P.; Makarenko, I.N.; Stishov, S.M.; Glazkov, V.P.; Goncharenko, I.N.; Somenkov, V.A. Diamond anvil cells for neutron diffraction. High Press. Res. 1995, 14, 193–197. [Google Scholar] [CrossRef]
- Belushkin, A.V.; Manoshin, S.A.; Kozlenko, D.P.; Kichanov, S.E. Modeling of the focusing device and the elliptical neutron guide for the DN-6 diffractometer at IBR-2 reactor. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 892, 48–52. [Google Scholar] [CrossRef]
- Powder Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder); SRM 660c; National Institute of Standards and Technology, Department of Commerce: Gaithersburg, MD, USA, 2014; p. 20899.
- Belushkin, A.V.; Bogdzel, A.A.; Buzdavin, A.P.; Veleshki, S.I.; Zhuravlev, A.I.; Zhuravlev, V.V.; Kichanov, S.E.; Kozlenko, D.P.; Kulikov, S.A.; Levchanovskii, F.V.; et al. A multisectional annular thermal-neutron detector for the study of diffraction on microsamples in axial geometry. Phys. Part. Nuclei Lett. 2013, 10, 436–441. [Google Scholar] [CrossRef]
- Churakov, A.V.; Belushkin, A.V.; Bogdzel, A.A.; Drozdov, V.A.; Kruglov, V.V.; Kulikov, S.A.; Levtchanovski, F.V.; Litvinenko, E.I.; Milkov, V.M.; Murashkevich, S.M.; et al. The detector systems of the IBR-2M spectrometers. J. Phys. Conf. Ser. 2018, 1021, 012021. [Google Scholar] [CrossRef]
- Levchanovskiy, F.V.; Murashkevich, S.M. The data acquisition system for neutron spectrometry—A new approach and implementation. In Proceedings of the XXIV International Symposium Nuclear Electronics & Computing 2013; JINR: Dubna, Russia, 2013; p. 176. ISBN 978-5-9530-0374-2. [Google Scholar]
- Kulikov, S.A.; Prikhodko, V.I. New generation of data acquisition and data storage systems of the IBR-2 reactor spectrometers complex. Phys. Part. Nucl. 2016, 47, 702–710. [Google Scholar] [CrossRef]
- Chernikov, A.N.; Trofimov, V.N. Helium-3 adsorption refrigerator cooled with a closed-cycle cryocooler. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2014, 8, 956–960. [Google Scholar] [CrossRef]
- Golosova, N.O.; Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Liermann, H.-P.; Glazyrin, K.V.; Savenko, B.N. Structural and magnetic properties of Cr2O3 at high pressure. J. Alloys Compd. 2017, 722, 593–598. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Mekhdieva, R.Z.; Lukin, E.V.; Kichanov, S.E.; Kozlenko, D.P.; Jabarov, S.H.; Dang, T.N.; Mammadov, A.I.; Savenko, B.N. Structural aspects of the antiferroelectric-paraelectric phase transition in double perovskite Pb2MgWO6 at high pressures and temperatures. Phys. Solid State 2014, 56, 765–770. [Google Scholar] [CrossRef]
- Golosova, N.O.; Kozlenko, D.P.; Dubrovinsky, L.S.; Cerantola, V.; Bykov, M.; Bykova, E.; Kichanov, S.E.; Lukin, E.V.; Savenko, B.N.; Ponomareva, A.V.; et al. Magnetic and structural properties of FeCO3 at high pressures. Phys. Rev. B 2017, 96, 134405. [Google Scholar] [CrossRef]
- Belozerova, N.M.; Kichanov, S.E.; Jirak, Z.; Kozlenko, D.P.; Kacenka, M.; Kaman, O.; Lukin, E.V.; Savenko, B.N. High pressure effects on the crystal and magnetic structure of nanostructured manganites La0.63Sr0.37MnO3 and La0.72Sr0.28MnO3. J. Alloys Compd. 2015, 646, 998–1003. [Google Scholar] [CrossRef]
- Vu, M.T.; Kozlenko, D.P.; Kichanov, S.E.; Troyanchuk, I.O.; Lukin, E.V.; Khiem, L.H.; Savenko, B.N. Pressure induced antiferromagnetism in the manganite La0.7Sr0.3Mn0.83Nb0.17O3. J. Alloys Compd. 2016, 681, 527–531. [Google Scholar] [CrossRef]
- Kozlenko, D.P.; Belozerova, N.M.; Ata-Allah, S.S.; Kichanov, S.E.; Yehia, M.; Hashhash, A.; Lukin, E.V.; Savenko, B.N. Neutron diffraction study of the pressure and temperature dependence of the crystal and magnetic structures of Zn0.3Cu0.7Fe1.5Ga0.5O4 polycrystalline ferrite. J. Magn. Magn. Mater. 2018, 449, 44–48. [Google Scholar] [CrossRef]
- Salamatin, D.A.; Sidorov, V.A.; Kichanov, S.E.; Velichkov, A.; Salamatin, A.V.; Fomicheva, L.N.; Kozlenko, D.P.; Nikolaev, A.V.; Menzel, D.; Budzynski, M.; et al. Coexistence of charge density wave and incommensurate antiferromagnetism in the cubic phase of DyGe2.85 synthesised under high pressure. J. Alloys Compd. 2018, 755, 10–14. [Google Scholar] [CrossRef]
- Sadykov, R.A.; Gruzinp, L.; Suhoparov, V.A. High pressure apparatus for neutron diffraction investigation of strongly compressible substances (H2, D2, Ar). High Press. Res. 1995, 14, 199–202. [Google Scholar] [CrossRef]
- Besson, J.M.; Pruzan, P.; Klotz, S.; Hamel, G.; Silvi, B.; Nelmes, R.J.; Loveday, J.S.; Wilson, R.M.; Hull, S. Interatomic distances in D2O VIII under high pressure from neutron scattering measurements to 10 GPa. AIP Conf. Proc. 1994, 309, 409–412. [Google Scholar] [CrossRef]
The Neutron Flux on Sample Place (measured by gold foils activation method) | ~3.5 × 107 n/cm2/s |
The Characteristic TOF Distance | 30.5 m |
The Achievable D-Spacing Range | |
at scattering angle 2θ = 90°: | 0.5–5.7 Å |
at scattering angle 2θ = 42°: | 1.8–11.2 Å |
ResolutionΔd/d(for the d = 2 Å) | |
at 2θ = 90°: | 0.025 |
at 2θ = 42°: | 0.030 |
The Typical Data Collection Time | |
Sample under ambient conditions, V ~50 mm3 | 0.1 h |
Sample in high-pressure cell with sapphire anvils, V ~1 mm3 | 2–4 h |
Sample in high-pressure cell with diamond anvils, V ~0.01 mm3 | 20–40 h |
The Available Pressure Range in Experiments | |
high-pressure cell with sapphire anvils | 12 GPa |
high-pressure cell with diamond anvils | 50 GPa |
The Available Temperature Range | |
The cryostat based on a closed-cycle helium refrigerator | 5–320 K |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlenko, D.; Kichanov, S.; Lukin, E.; Savenko, B. The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale. Crystals 2018, 8, 331. https://doi.org/10.3390/cryst8080331
Kozlenko D, Kichanov S, Lukin E, Savenko B. The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale. Crystals. 2018; 8(8):331. https://doi.org/10.3390/cryst8080331
Chicago/Turabian StyleKozlenko, Denis, Sergey Kichanov, Evgenii Lukin, and Boris Savenko. 2018. "The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale" Crystals 8, no. 8: 331. https://doi.org/10.3390/cryst8080331
APA StyleKozlenko, D., Kichanov, S., Lukin, E., & Savenko, B. (2018). The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale. Crystals, 8(8), 331. https://doi.org/10.3390/cryst8080331