Effect of Additives on the Morphologies of Hydrothermal Products Prepared from Semi-Dry Desulfurization Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Calcium Sulfate Whiskers
2.3. Characterization of the Hydrothermal Products
2.4. Details of Molecular Dynamics Simulations
3. Results and Discussion
3.1. Effect of Additives on the Morphology of the Products
3.2. XRD Patterns of the Hydrothermal Products
3.3. Analysis of the Crystal Faces
3.4. Molecular Dynamics Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Guo, B.; Ren, A.; Bian, J. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory. Waste Manag. Res. 2009, 28, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.d.P.V.d.; Medeiros, J.L.d.; Araújo, O.d.Q.F.; Cruz, M.d.A.; Ribeiro, G.T.; Oliveira, V.R.d. Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates. Energy Convers. Manag. 2017, 143, 173–187. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Li, F.; Chen, J.; Qin, Z.; Pang, L. Recycling of flue gas desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation. Constr. Build. Mater. 2014, 73, 137–144. [Google Scholar] [CrossRef]
- Clark, R.B.; Ritchey, K.D.; Baligar, V.C. Benefits and constraints for use of fgd products on agricultural land. Fuel 2001, 80, 821–828. [Google Scholar] [CrossRef]
- Solem-Tishmack, J.K.; McCarthy, G.J.; Docktor, B.; Eylands, K.E.; Thompson, J.S.; Hassett, D.J. High-calcium coal combustion by-products: Engineering properties, ettringite formation, and potential application in solidification and stabilization of selenium and boron. Cem. Concr. Res. 1995, 25, 658–670. [Google Scholar] [CrossRef]
- Srisomang, R.; Naksata, W.; Thiansem, S.; Sooksamiti, P.; Arqueropanyo, O.-A. Utilization of leonardite, flue gas desulfurization gypsum and clay for production of ceramic plant growth material. Environ. Earth Sci. 2015, 73, 1621–1628. [Google Scholar] [CrossRef]
- Telesca, A.; Marroccoli, M.; Calabrese, D.; Valenti, G.L.; Montagnaro, F. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials. Waste Manag. 2013, 33, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, L. The effects of modified flue gas desulfurization residue on growth of sweet potato and soil amelioration. Water Air Soil Pollut. 2015, 226, 245. [Google Scholar] [CrossRef]
- Burgess-Conforti, J.R.; Brye, K.R.; Miller, D.M.; Pollock, E.D.; Wood, L.S. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland. Environ. Sci. Pollut. Res. 2018, 25, 3386–3396. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, W.; Ma, C.; Xu, X.; Dong, Y. Study on a new utilization method for dry and semi-dry desulfurization fdg residues. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 28–31 March 2009; pp. 1–5. [Google Scholar]
- Chai, N.; Shi, L.; Li, J. Amelioration of acidic soil using the calcined product of dry and semi-dry desulfurization residue with k-feldspar: Plant and soil responses and heavy metal assessment. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Li, Y.; Jing, P.; Zhou, J.; Zhu, T. Calcium sulfite oxidation and crystal growth in the process of calcium carbide residue to produce gypsum. Waste Biomass Valoriz. 2014, 5, 125–131. [Google Scholar] [CrossRef]
- Xu, A.; Li, H.; Luo, K.; Xiang, L. Formation of calcium sulfate whiskers from caco3-bearing desulfurization gypsum. Res. Chem. Intermed. 2011, 37, 449–455. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhu, X.; Du, L. Preparation of Calcium Sulfate Whisker by Hydrothermal Method from Flue Gas Desulfurization (fgd) Gypsum; Trans Tech: London, UK, 2013; pp. 823–826. [Google Scholar]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N. A review on the applications of coal combustion products in china. Int. Geol. Rev. 2018, 60, 671–716. [Google Scholar] [CrossRef]
- Tan, H.; Dong, F.; Liu, J. Morphology control of calcium sulfate hemihydrates and application in size screening iron/sulfur of jarosite sediment. J. Phys. Chem. Solids 2018, 112, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Wang, Y.; Tan, R.; Ke, X.; Zhou, X.; Geng, J.; Hou, H.; Zhou, M. Calcium sulfate hemihydrate whiskers obtained from flue gas desulfurization gypsum and used for the adsorption removal of lead. Crystals 2017, 7, 270. [Google Scholar] [CrossRef]
- Sun, H.; Tan, D.; Peng, T.; Liang, Y. Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum. Proced. Environ. Sci. 2016, 31, 621–626. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Zhu, X.; Yang, J. Preparation of calcium sulfate whiskers from fgd gypsum via hydrothermal crystallization in the H2SO4–NaCl–H2O system. Particuology 2014, 17, 42–48. [Google Scholar] [CrossRef]
- Liu, T.; Fan, H.; Xu, Y.; Song, X.; Yu, J. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method. Front. Chem. Sci. Eng. 2017, 11, 545–553. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Y.; Wang, G.; Miao, M.; Shi, L. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technol. 2015, 271, 1–6. [Google Scholar] [CrossRef]
- Yuan, W.; Cui, J.; Cai, Y.; Xu, S. A novel surface modification for calcium sulfate whisker used for reinforcement of poly(vinyl chloride). J. Polym. Res. 2015, 22, 173. [Google Scholar] [CrossRef]
- Wang, H.; Mu, B.; Ren, J.; Jian, L.; Zhang, J.; Yang, S. Mechanical and tribological behaviors of pa66/pvdf blends filled with calcium sulphate whiskers. Polym. Compos. 2009, 30, 1326–1332. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.C.; Xue, Y.; Cang, S.J. Studies on the application properties of calcium sulfate whisker in silicone rubber composites. J. Elastomers Plast. 2011, 44, 55–66. [Google Scholar] [CrossRef]
- Yang, J.; Nie, S.; Zhu, J. Fabrication and characterization of poly(lactic acid) biocomposites reinforced by calcium sulfate whisker. J. Polym. Environ. 2018, 26, 3458–3469. [Google Scholar] [CrossRef]
- Wang, J.; Yang, K.; Lu, S. Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Perform. Polym. 2011, 23, 141–150. [Google Scholar] [CrossRef]
- Pan, Z.; Lou, Y.; Yang, G.; Ni, X.; Chen, M.; Xu, H.; Miao, X.; Liu, J.; Hu, C.; Huang, Q. Preparation of calcium sulfate dihydrate and calcium sulfate hemihydrate with controllable crystal morphology by using ethanol additive. Ceram. Int. 2013, 39, 5495–5502. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Q.; Wang, Y.; Shi, P.; Jiang, M. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum. Chin. J. Chem. Eng. 2016, 24, 1552–1560. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Q.; Wang, Y.; Shi, P.; Jiang, M. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl. Surf. Sci. 2016, 360, 263–269. [Google Scholar] [CrossRef]
- Yang, N.; Xiao, H.; Guo, W. Additives-assisted hydrothermal synthesis of calcium sulfate whisker and its growth mechanism. J. Chin. Ceram. Soc. 2014, 42, 539–544. [Google Scholar]
- Kong, B.; Guan, B.; Yates, M.Z.; Wu, Z. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir 2012, 28, 14137–14142. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wu, H.; Xia, Y. Influence of synthetic polymers on the mechanical properties of hardened β-calcium sulfate hemihydrate plasters. J. Ind. Eng. Chem. 2016, 33, 355–361. [Google Scholar] [CrossRef]
- Chen, R.; Hou, S.; Wang, J.; Xiang, L. Influence of alkyl trimethyl ammonium bromides on hydrothermal formation of α-CaSO4·0.5H2O whiskers with high aspect ratios. Crystals 2017, 7, 28. [Google Scholar] [CrossRef]
- Poornachary, S.K.; Chow, P.S.; Tan, R.B.H. Impurity effects on the growth of molecular crystals: Experiments and modeling. Adv. Powder Technol. 2008, 19, 459–473. [Google Scholar] [CrossRef]
- Clydesdale, G.; Thomson, G.B.; Walker, E.M.; Roberts, K.J.; Meenan, P.; Docherty, R. A molecular modeling study of the crystal morphology of adipic acid and its habit modification by homologous impurities. Cryst. Growth Des. 2005, 5, 2154–2163. [Google Scholar] [CrossRef]
- Hadicke, E.; Rieger, J.; Ursula Rau, I.; Boeckh, D. Molecular dynamics simulations of the incrustation inhibition by polymeric additives. Phys. Chem. Chem. Phys. 1999, 1, 3891–3898. [Google Scholar] [CrossRef]
- Guan, Q.; Hu, Y.; Tang, H.; Sun, W.; Gao, Z. Preparation of α-CaSO4·½H2O with tunable morphology from flue gas desulphurization gypsum using malic acid as modifier: A theoretical and experimental study. J. Colloid Interface Sci. 2018, 530, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Yani, Y.; Chow, P.S.; Tan, R.B.H. Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit. Mol. Pharm. 2011, 8, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Song, X.; Lu, G.; Xu, Y.; Sun, Y.; Yu, J. Effect of additives on the morphology of calcium sulfate hemihydrate: Experimental and molecular dynamics simulation studies. Chem. Eng. J. 2015, 278, 320–327. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hens, A.; Kulashrestha, S.; Chandra Murmu, N.; Banerjee, P. Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E 2015, 69, 371–377. [Google Scholar] [CrossRef]
- Bezou, C.; Nonat, A.; Mutin, J.C.; Christensen, A.N.; Lehmann, M.S. Investigation of the crystal structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by powder diffraction methods. J. Solid State Chem. 1995, 117, 165–176. [Google Scholar] [CrossRef]
- Kitao, O.; Miura, N.; Ushiyama, H. Molecular mechanics with qeq-cs (charge equilibration method generalized for charge separation system)1dedicated to professor keiji morokuma in celebration of his 65th birthday.1. J. Mol. Struct. Theochem 1999, 461–462, 239–247. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Song, X.; Yu, J. Molecular modeling for selective adsorption of halite with dodecylmorpholine. Acta Phys.-Chim. Sin. 2009, 25, 963–969. [Google Scholar]
- Feldmann, T.; Demopoulos, G.P. Effects of crystal habit modifiers on the morphology of calcium sulfate dihydrate grown in strong CaCl2-HCl solutions. J. Chem. Technol. Biotechnol. 2014, 89, 1523–1533. [Google Scholar] [CrossRef]
- Orme, C.A.; Noy, A.; Wierzbicki, A.; McBride, M.T.; Grantham, M.; Teng, H.H.; Dove, P.M.; DeYoreo, J.J. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001, 411, 775. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Guan, B.; Fu, H.; Yang, L. Effect of potassium sodium tartrate and sodium citrate on the preparation of α-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution. J. Am. Ceram. Soc. 2009, 92, 2894–2899. [Google Scholar] [CrossRef]
- Addala, S.; Bouhdjer, L.; Chala, A.; Bouhdjar, A.; Halimi, O.; Boudine, B.; Sebais, M. Structural and optical properties of a nacl single crystal doped with cuo nanocrystals. Chin. Phys. B 2013, 22, 098103. [Google Scholar] [CrossRef]
- Rai, R.; Triloki, T.; Singh, B.K. X-ray diffraction line profile analysis of kbr thin films. Appl. Phys. A 2016, 122, 774. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, J. Investigation of the effects of sodium dicarboxylates on the crystal habit of calcium sulfate α-hemihydrate. Langmuir 2017, 33, 9637–9644. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Huang, H.; Duan, X.; Pei, C. Structures and properties prediction of hmx/tatb co-crystal. Propellants, Explos. Pyrotech. 2011, 36, 416–423. [Google Scholar] [CrossRef]
Additives | Cell Parameters | R (%) | |||||
---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | α (◦) | β (◦) | γ (◦) | ||
Sodium oleate | 11.9079 | 6.9146 | 11.9118 | 90 | 90.23 | 90 | 10.77 |
SDBS | 11.9558 | 7.1160 | 12.7695 | 90 | 91.90 | 90 | 9.85 |
Sodium citrate | 11.9179 | 7.1357 | 12.7089 | 90 | 92.5 | 90 | 13.74 |
Additive | Interaction Energy (kJ·mol−1) | ||
---|---|---|---|
(400) | (310) | (530) | |
Sodium oleate | −79.60 | −51.28 | −68.42 |
SDBS | −106.16 | −73.13 | −68.31 |
Sodium citrate | −59.25 | −871.84 | −59.91 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Hao, H.; Yuan, Z. Effect of Additives on the Morphologies of Hydrothermal Products Prepared from Semi-Dry Desulfurization Residues. Crystals 2018, 8, 417. https://doi.org/10.3390/cryst8110417
Li L, Hao H, Yuan Z. Effect of Additives on the Morphologies of Hydrothermal Products Prepared from Semi-Dry Desulfurization Residues. Crystals. 2018; 8(11):417. https://doi.org/10.3390/cryst8110417
Chicago/Turabian StyleLi, Lixia, Haiqing Hao, and Zhitao Yuan. 2018. "Effect of Additives on the Morphologies of Hydrothermal Products Prepared from Semi-Dry Desulfurization Residues" Crystals 8, no. 11: 417. https://doi.org/10.3390/cryst8110417
APA StyleLi, L., Hao, H., & Yuan, Z. (2018). Effect of Additives on the Morphologies of Hydrothermal Products Prepared from Semi-Dry Desulfurization Residues. Crystals, 8(11), 417. https://doi.org/10.3390/cryst8110417