Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Crystalline MαNP Salts
2.2. Crystal Conformations of MαNP Salts
2.3. Three-Step Hierarchical Assembly
- Close ion-pairs joined with salt bridges to form 21 columns.
- The 21 columns formed a sheet structure via homo-aromatic C–H∙∙∙π interactions between 1-naphthyl groups.
- These sheet structures stacked to form the whole crystal.
2.4. Associations of Close Ion-Pairs
2.5. Molecular Packing of MαNP Salts (1): Arrays of Columns
2.6. Molecular Packing of MαNP Salts (2): Stacking of Sheet Structures
3. Conclusions
4. Materials and Methods
4.1. X-ray Crystallography
4.2. Preparation of Salt 6
4.3. Preparation of Salt 7
4.4. Preparation of Salt 8
4.5. Preparation of Salt 9
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Mori, K. Bioactive natural products and chirality. Chirality 2011, 23, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Harada, N. Determination of absolute configurations by X-ray crystallography and 1H NMR anisotropy. Chirality 2008, 20, 691–723. [Google Scholar] [CrossRef] [PubMed]
- Goto, J.; Hasegawa, M.; Nakamura, S.; Shimada, K.; Nambara, T. New derivatization reagents for the resolution of amino acid enantiomers by high-performance liquid chromatography. J. Chromatogr. 1978, 152, 413–419. [Google Scholar] [CrossRef]
- Ichikawa, A.; Hiradate, S.; Sugio, A.; Kuwahara, S.; Watanabe, M.; Harada, N. Absolute configuration of 2-hydroxy-2-(1-naphthyl)propionic acid as determined by the 1H NMR anisotropy method. Tetrahedron Asymmetry 1999, 10, 4075–4078. [Google Scholar] [CrossRef]
- Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher’s method. The absolute congifurations of marine terpenoids. J. Am. Chem. Soc. 1991, 113, 4092–4096. [Google Scholar] [CrossRef]
- Ichikawa, A.; Ono, H.; Echigo, T.; Mikata, Y. Crystal structures and chiral recognition of the diastereomeric salts prepared from 2-methoxy-2-(1-naphthyl)propanoic acid. CrystEngComm 2011, 13, 4536–4548. [Google Scholar] [CrossRef]
- Desiraju, G.R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Hayashi, N. Solid State Organic Chemistry; Kagakudojin: Kyoto, Japan, 2009; pp. 31–33. [Google Scholar]
- Nishio, M. New Edition: Introduction to Intermolecular Forces in Organic Chemistry; Kodansha Scientific: Tokyo, Japan, 2008; pp. 44–45. [Google Scholar]
- Ichikawa, A.; Ono, H.; Mikata, Y. The crystal structure of the more-soluble Mosher’s salt. Chem. Lett. 2017, 46, 550–553. [Google Scholar] [CrossRef]
- Ichikawa, A.; Ono, H.; Mikata, Y. Naphthyl groups in chiral recognition: Structures of salts and esters of 2-methoxy-2-naphthylpropanoic acids. Chem. Asian J. 2012, 7, 2294–2304. [Google Scholar] [CrossRef] [PubMed]
- Hisaki, I.; Sasaki, T.; Tohnai, N.; Miyata, M. Multipoint approximation method for handedness determination of two-fold helical assemblies and their bundles. J. Synth. Org. Chem. Jpn. 2012, 70, 908–917. [Google Scholar] [CrossRef]
- Miyata, M.; Tohnai, N.; Hisaki, I. Crystalline host–guest assemblies of steroidal and related molecules: Diversity, hierarchy, and supramolecular chirality. Acc. Chem. Res. 2007, 40, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Hidaka, J. Stereochemistry, 2nd ed.; Dainippoon Tosho: Tokyo, Japan, 1994; pp. 129–130. [Google Scholar]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, M.Z.; Cavalcanti, S.M.T.; Moreira, D.R.M.; Filgueira de Azevedo, W., Jr.; Leite, A.C.L. Halogen atoms in the modern medicinal chemistry: Hints for the drug design. Curr. Drug Targets 2010, 11, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Saigo, K.; Sakai, K. Toward efficient optical resolution by diastereomeric salt formation. J. Synth. Org. Chem. Jpn. 2011, 69, 499–505. [Google Scholar] [CrossRef]
- Kinbara, K.; Oishi, K.; Harada, Y.; Saigo, K. Effect of a substituent on an aromatic group in diastereomeric resolution. Tetrahedron 2000, 56, 6651–6655. [Google Scholar] [CrossRef]
- Sakai, K. Industrial-scale optical resolution with the diastereomeric salt formation method—A novel resolution technology using molecular recognition mechanism. Chem. Chem. Ind. 2004, 57, 507–511. [Google Scholar]
- Karamertzanis, P.G.; Price, S.L. Challenges of crystal structure prediction of diastereomeric salt pairs. J. Phys. Chem. B 2005, 109, 17134–17150. [Google Scholar] [CrossRef] [PubMed]
- Reichenbächer, K.; Süss, H.I.; Hulliger, J. Fluorine in crystal engineering—“The little atom that could”. Chem. Soc. Rev. 2005, 34, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.N.; Inoue, Y.; Nakanishi, I.; Kitaura, K. Cl–π interactions in protein–ligand complexes. Protein Sci. 2008, 17, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
Compound | 6 1 | 7 | 8 1 | 9 1 |
---|---|---|---|---|
Molecular formula | C23.5H29NO4.5 | C22H24FNO3 | C22.5H26ClNO3.5 | C23H28ClNO4 |
Formula weight | 397.49 | 369.43 | 401.91 | 417.93 |
Crystal system | monoclinic | monoclinic | monoclinic | monoclinic |
Space group | C2 | P21 | C2 | P21 |
Z | 4 | 2 | 4 | 2 |
a/Å | 24.026(8) | 11.8064(12) | 28.612(5) | 11.5676(10) |
b/Å | 6.790(2) | 6.7248(6) | 6.8078(9) | 6.8976(6) |
c/Å | 14.800(5) | 12.7444(11) | 14.856(3) | 14.2838(14) |
β/° | 117.208(4) | 102.717(4) | 132.9310(16) | 109.467(3) |
V/Å3 | 2147.3(12) | 987.03(16) | 2118.7(6) | 1074.54(17) |
Dcalculated/g·cm–3 | 1.229 | 1.243 | 1.260 | 1.292 |
μ/mm−1 | 0.084 | 0.088 | 0.205 | 0.206 |
2θmax/° | 54.9 | 54.9 | 54.9 | 54.9 |
Temperature/K | 123 | 123 | 123 | 153 |
No. of reflections collected | 8451 | 7757 | 8312 | 10,547 |
No. of reflections unique | 4857 | 4409 | 4671 | 4876 |
Rint | 0.0292 | 0.0190 | 0.0134 | 0.0115 |
No. of parameters | 272 | 248 | 262 | 268 |
Final R1 (I > 2(σ)I)) 2 | 0.0611 | 0.0402 | 0.0521 | 0.0336 |
wR2 (all data) 3 | 0.1620 | 0.0984 | 0.1370 | 0.0963 |
GOF | 1.127 | 1.077 | 1.036 | 1.061 |
Flack parameter 4 | 1.7(15) | 1.1(7) | −0.03(9) | −0.02(4) |
CCDC | 1,442,523 | 1,442,524 | 1,442,525 | 1,442,526 |
Salt | Substituent | O1–C1–C2–O3 (°) | C4–O3–C2–C1 (°) | C3–C2–C5–C6 (°) | N1–C15–C17–C22 (°) |
---|---|---|---|---|---|
6 | p-MeO | –26.4(3) | –178.0(3) | –5.3(4) | 49.0(4) |
7 | p-F | –28.9(2) | 179.9(1) | 2.7(2) | 53.0(2) |
8 | p-Cl | –26.9(3) | –179.3(2) | –5.9(4) | 48.8(4) |
9 | m-Cl | –26.5(2) | 178.4(1) | 0.2(2) | 47.1(2) |
Salt | Substituent | d1 (Å) 1 | θ1 (°) 2 | d2 (Å) 1 | θ2 (°) 2 | d3 (Å) 1 | θ3 (°) 2 | d4 (Å) 1 | θ4 (°) 2 |
---|---|---|---|---|---|---|---|---|---|
6 | p-MeO | 2.23 | 127 | 2.05 | 158 | 1.90 | 162 | 1.96 | 163 |
7 | p-F | 2.33 | 125 | 2.02 | 161 | 1.89 | 166 | 1.90 | 163 |
8 | p-Cl | 2.30 | 120 | 1.98 | 166 | 1.86 | 169 | 1.98 | 162 |
9 | m-Cl | 2.25 | 128 | 2.06 | 158 | 1.89 | 161 | 1.98 | 161 |
Salt | Substituent | dL (Å) 1 | dM (Å) 1 | C11–H11∙∙∙C19 (°) | C12–H12∙∙∙C18 (°) |
---|---|---|---|---|---|
6 | p-MeO | 2.88 | 3.17 | 138 | 121 |
7 | p-F | 2.98 | 3.15 | 141 | 126 |
8 | p-Cl | 2.83 | 3.12 | 136 | 121 |
9 | m-Cl | 3.01 | 3.29 | 136 | 123 |
Salt | Substituent | H9···CgX (Å) | H10···CgY (Å) | C9–H9···CgX (°) | C10–H10···CgY (°) |
---|---|---|---|---|---|
6 | p-MeO | 2.50 | 3.05 | 145 | 137 |
7 | p-F | 2.62 | 3.41 | 155 | 127 |
8 | p-Cl | 2.53 | 3.02 | 145 | 135 |
9 | m-Cl | 2.66 | 3.36 | 155 | 126 |
Salt | Substituent | Interatomic Distance | (Å) | Interatomic Angle | (°) |
---|---|---|---|---|---|
6 | p-MeO | H7···π’ 1 | 2.65 | ||
H7···Cg’ 2 | 3.30 | C7–H7···Cg’ 1 | 174 | ||
H23A’···C7 | 2.97 | ||||
O2···O5 | 2.84 | ||||
H21’···O5 | 2.48 | C21’–H21’···O5 | 138 | ||
7 | p-F | H18···F1’ | 2.61 | C18–H18···F1’ | 118 |
8 | p-Cl | H7···π’ 1 | 2.69 | ||
H7···Cg’ 2 | 3.09 | C7–H7···Cg’ 1 | 165 | ||
O2···O4 | 2.83 | ||||
H21’···O4 | 2.42 | C21’–H21’···O4 | 133 | ||
9 | m-Cl | H20’···Cg 2 | 2.72 | C20’–H20’···Cg | 170 |
H20’···π 1 | 2.67 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, A.; Ono, H.; Mikata, Y. Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines. Crystals 2017, 7, 263. https://doi.org/10.3390/cryst7090263
Ichikawa A, Ono H, Mikata Y. Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines. Crystals. 2017; 7(9):263. https://doi.org/10.3390/cryst7090263
Chicago/Turabian StyleIchikawa, Akio, Hiroshi Ono, and Yuji Mikata. 2017. "Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines" Crystals 7, no. 9: 263. https://doi.org/10.3390/cryst7090263
APA StyleIchikawa, A., Ono, H., & Mikata, Y. (2017). Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines. Crystals, 7(9), 263. https://doi.org/10.3390/cryst7090263