Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, J.; Wu, S.T. Recent advances in polymer network liquid crystal spatial light modulators. J. Polym. Sci. Polym. Phys. 2014, 3, 183–192. [Google Scholar] [CrossRef]
- Hsu, C.J.; Sheu, C.R. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals. Opt. Express 2012, 20, 4738–4746. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Peng, F.; Luo, Z.; Xu, D.; Wu, S.T.; Li, M.C.; Lee, S.L.; Tsai, W.C. High performance liquid crystal displays with a low dielectric constant material. Opt. Mater. Express 2014, 4, 2262–2273. [Google Scholar] [CrossRef]
- Wu, S.T.; Efron, U.; Hess, L.D. Birefringence measurements of liquid crystals. Appl. Opt. 1984, 23, 3911–3915. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.T.; Wu, C.S. Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals. Phys. Rev. A 1990, 42, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, T.X.; Zhu, X.; Wu, S.T. Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell. J. Appl. Phys. 2004, 95, 5502–5508. [Google Scholar] [CrossRef]
- Yu, B.H.; Song, D.H.; Kim, K.H.; Park, B.W.; Choi, S.W.; Park, S.I.; Kang, S.G.; Yoon, J.H.; Kim, B.K.; Yoon, T.H. Formation of polymer networks for fast in-plane switching of liquid crystals at low temperatures. Jpn. J. Appl. Phys. 2013, 52, 094102. [Google Scholar] [CrossRef]
- Lim, Y.J.; Choi, Y.E.; Lee, J.H.; Lee, G.D.; Komitov, L.; Lee, S.H. Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field. Opt. Express 2014, 22, 10634–10641. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Yoshida, H.; Ozaki, M. Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response. Opt. Mater. Express 2014, 4, 916–923. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Ren, H.; Wu, S.T. Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens. Appl. Phys. Lett. 2013, 102, 161106. [Google Scholar] [CrossRef]
- Lorenz, A.; Braun, L.; Kolosova, V. Continuous optical phase modulation in a copolymer network nematic liquid crystal. ACS Photonics 2016, 3, 1188–1193. [Google Scholar] [CrossRef]
- Love, G.D.; Kirby, A.K.; Ramsey, R.A. Sub-millisecond, high stroke phase modulation using polymer network liquid crystals. Opt. Express 2010, 18, 7384–7489. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.Y.; Hsu, C.J.; Chen, Y.W.; Tseng, S.H.; Sheu, C.R. Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response. Opt. Express 2016, 24, 7534–7542. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.H.; Lin, Y.H.; Ren, H.; Gauza, S.; Wu, S.T. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators. Appl. Phys. Lett. 2004, 84, 1233–1235. [Google Scholar] [CrossRef]
- Peng, F.; Chen, H.; Tripathi, S.; Twieg, R.J.; Wu, S.T. Fast-response infrared phase modulator based on polymer network liquid crystal. Opt. Mater. Express 2015, 5, 265–273. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Wu, S.T. Submillisecond-response and scattering-free infrared liquid crystal phase modulators. Opt. Express 2012, 20, 20124–20129. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xian, H.; Chen, Y.; Wu, S.T. Submillisecond-response polymer network liquid crystal phase modulators at 1.06–l m wavelength. Appl. Phys. Lett. 2011, 99, 021106. [Google Scholar] [CrossRef]
- Bunning, T.J.; Natarajan, L.V.; Tondiglia, V.P.; Sutherland, R.L. Holographic polymer-dispersed liquid crystals (H–PDLCs). Annu. Rev. Mater. Sci. 2000, 30, 83–115. [Google Scholar] [CrossRef]
- Sio, L.D.; Tabiryan, N.; Bunning, T.J. POLICRYPS-based electrically switchable Bragg reflector. Opt. Express 2015, 23, 32696–32702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Liu, C.L.; Duan, J.Z.; Zeng, J.C.; Zhang, D.Y.; Luo, Y.Q. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator. Opt. Express 2014, 22, 14757–14768. [Google Scholar]
- Lan, Y.F.; Tsai, C.Y.; Lu, J.K.; Sugiura, N. Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal. Polymer 2013, 54, 1876–1879. [Google Scholar] [CrossRef]
- Chien, C.Y.; Sheu, C.R. Small dosage of holographic exposure via a He-Ne laser to fabricate tunable liquid crystal phase gratings operated with low electric voltages. Liq. Cryst. 2017, 44, 854–862. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chen, Y.H.; Li, H.W.; Hsu, J.S. Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film. Opt. Express 2016, 24, 7063–7068. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.Q.; Yang, D.K. Freedericksz transition in polymer-stabilized nematic liquid crystals. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 2000, 61, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.K.; Cui, Y.; Nemati, H.; Zhou, X.; Moheghi, A. Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals. J. Appl. Phys. 2013, 114, 243515. [Google Scholar] [CrossRef]
- Sun, J.; Wu, S.T.; Haseba, Y. A low voltage submillisecond-response polymer network liquid crystal spatial light modulator. Appl. Phys. Lett. 2014, 104, 023305. [Google Scholar] [CrossRef]
- Nie, X.; Lu, R.; Xian, H.; Wu, T.X.; Wu, S.T. Anchoring energy and cell gap effects on liquid crystal response time. J. Appl. Phys. 2007, 101, 103110. [Google Scholar] [CrossRef]
Label of PNLC Cells | RM257 (wt%) | NVP (wt%) | E7 (wt%) | H–Nu–Blue–640 (wt%) | Borate–V (wt%) |
---|---|---|---|---|---|
RM8 | 8 | 2 | 89.5 | 0.25 | 0.25 |
RM7 | 7 | 2 | 90.5 | 0.25 | 0.25 |
RM6 | 6 | 2 | 91.5 | 0.25 | 0.25 |
RM5 | 5 | 2 | 92.5 | 0.25 | 0.25 |
RM5N2 | 5 | 4 | 90.5 | 0.25 | 0.25 |
Label of PNLC Cells | V0.5π (Vrms) | V1.0π (Vrms) | V1.5π (Vrms) | V2.0π (Vrms) |
---|---|---|---|---|
RM8 | 66 | 80 | 98 | 120 |
RM7 | 57 | 69 | 80 | 95 |
RM5N2 | 45 | 59 | 68 | 79 |
RM8 | RM7 | RM5N2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V0.5π | V1.0π | V1.5π | V2.0π | V0.5π | V1.0π | V1.5π | V2.0π | V0.5π | V1.0π | V1.5π | V2.0π | |
Phase deviation | 0 | 0.1π | 0.2π | 0.25π | 0 | 0 | 0.1π | 0.15π | 0 | 0 | 0 | 0.1π |
Boost voltage (Vrms) | 0 | 4 | 12 | 15 | 0 | 0 | 4 | 8 | 0 | 0 | 0 | 3 |
τr (ms) | 0.72 | 0.31 | 0.18 | 0.14 | 1.21 | 0.72 | 0.43 | 0.29 | 1.69 | 0.87 | 0.59 | 0.38 |
τf (ms) | 0.21 | 0.16 | 0.15 | 0.14 | 0.32 | 0.27 | 0.25 | 0.24 | 0.42 | 0.38 | 0.40 | 0.39 |
Average τr | 0.34 ms | 0.66 ms | 0.88 ms | |||||||||
Average τf | 0.17 ms | 0.27 ms | 0.40 ms |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, C.-Y.; Sheu, C.-R. Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time. Crystals 2017, 7, 208. https://doi.org/10.3390/cryst7070208
Chien C-Y, Sheu C-R. Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time. Crystals. 2017; 7(7):208. https://doi.org/10.3390/cryst7070208
Chicago/Turabian StyleChien, Chun-Yu, and Chia-Rong Sheu. 2017. "Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time" Crystals 7, no. 7: 208. https://doi.org/10.3390/cryst7070208
APA StyleChien, C.-Y., & Sheu, C.-R. (2017). Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time. Crystals, 7(7), 208. https://doi.org/10.3390/cryst7070208