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Abstract: Photocurable monomer-doped liquid crystal (LC) cells were processed via holographic
exposure using a low-power He–Ne laser to generate holographic polymer networks. The
polymer network LC (PNLC) cells are used to fabricate infrared phase modulators at 1550 nm
wavelength possessing favorable electro-optical performance. Compared with our previous work,
the percentages of ingredients in the LC mixture filled in PNLC cells underwent a slight change.
The 2 wt% concentration of anisotropic monomer RM257 were in place of isotropic monomer
N–vinyl–2–pyrrolidinone (NVP). As a result, the fabricated phase modulators also maintained
well homogeneous LC alignments and optical-scattering-free characteristics. Furthermore, NVP
dopant successfully reduced the operating voltages from 95 Vrms to 79 Vrms to prevent polymer
network deformation when electrically operating with higher voltages. The fabricated infrared phase
modulators had a good average response time (i.e., rising time of 0.88 ms and falling time of 0.40 ms).

Keywords: holographic exposure; liquid crystal; infrared phase modulator

1. Introduction

To date, nematic liquid crystals (NLCs) are very popular and useful electro-optical materials
due to their dielectric anisotropy and optical birefringence, which are sensitive to LC alignments,
environmental temperature, and driving methods. They are widely applied in various electro-optical
devices including spatial light modulators, LC lenses, and displays [1–3]. For typical optical phase
modulation, a homogeneous LC cell is usually adopted to provide maximum phase retardation
(δ) using the equation δ = 2π∆nd/λ, where ∆n is LC birefringence, d is cell gap, and λ is incident
wavelength [4]. Considering that NLCs cells are used as infrared phase modulators, the cell gap
usually has a value larger than 10 µm to achieve a completed 2π phase modulation. However, the large
thickness of the LC gap is unfavorable for optical response time in LC electro-optical devices except
for several other reasons related to LC elastic constants, LC rotational viscosity [5,6], and electrically
driving methods. Usually, the rising time can be sped up with higher operating voltages. However,
the falling time is directly related to the relaxation of LC reorientations and is only controlled by
restoring elastic torque. Therefore, the thicker cell gaps have a slow falling time. Recently, polymer
network LC (PNLC) cells have been widely studied and demonstrated a fast response time [7–11].
In this method, the molecules of an anisotropic monomer like RM257 possessing an LC building block
structure are usually doped with LCs and processed with UV exposure, so that the generated polymer
networks provide constraints to LCs to effectively speed up the falling time during the relaxation of
LC molecular reorientations. However, light scattering occurs due to the refractive index mismatch of
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polymer networks and LC microdomains [1]. The degree of light scattering can be reduced by using
much smaller LC microdomains via optimal processing conditions such as monomer concentrations
and photopolymerization conditions [9–13]. Several studies have demonstrated scattering-free PNLC
phase modulators at near infrared wavelength [14–17].

Holographic exposure based on optical interference spatially generates very fine and directionally
periodic interference patterns with a pitch of a few hundred nanometers. Many studies used
this process to fabricate optical-scattering-free electro-optical LC devices such as holographic
polymer-dispersed LCs [18] and polymer LC polymer slices [19]. In our previous work, we adopted the
holographic exposure via a low-power He–Ne laser to expose the anisotropic monomer RM257-doped
LC cells to generate holographic polymer networks and to realize a LC phase modulator with low light
scattering and ultra-fast response time at visible wavelengths [13]. However, the operating voltage
(185 Vrms) was not suitable for conventional operations. In addition, high operating voltages usually
induce an electrostriction effect, that is, electrical deformations of anisotropic polymer networks [20,21],
which degrades device performance, such as unstable phase modulations with respect to electrical
operations. In the present study, PNLC cells processed via holographic exposure were also used to
fabricate optical-scattering-free infrared phase modulators with a fast response time. Furthermore, we
report a method to reduce operating voltages of infrared phase modulators by varying the ratio of
RM257 and N-vinyl-2-pyrrolidinone (NVP). We found that increasing the percentage of NVP dopants
successfully reduces operating voltages and the electrostriction effect.

2. Experimental

The LC mixture filled in empty cells (15 µm gap thickness, purchased from Chipset Technology,
Miaoli, Taiwan) for homogeneous LC cells contained the following: NLCs (E7, Daily Polymer,
Kaohsiung, Taiwan), anisotropic monomer (RM257, HCCH, Yangzhong, China), photo-initiator
(H-Nu-Blue-640, Spectra Group Limited, Millbury, USA), co-initiator (Borate-V, Spectra Group Limited,
Millbury, USA), and mono-acrylate monomer (NVP, Sigma-Aldrich, St. Louis, USA). Table 1 shows
ingredient ratios of LC mixture filled in experimental PNLC cells for processing holographic exposure.
The ingredients of H–Nu–Blue–640 and Borate–V were used to initiate photopolymerization of LC
cells when exposed with a He–Ne laser. The anisotropic monomer of RM257 with a rod-like molecular
unit possesses behaviors of an LC phase at a temperature range from 70 ◦C to 126 ◦C, which is
usually photopolymerized with a growth direction of polymer networks along with the direction of
LC alignments. NVP was used as a homogenizer to mix H–Nu–Blue–640 and Borate–V to yield a
uniform precursor. Thereafter, E7 and RM257 are mixed with the precursor to complete the mixing
process of the LC mixture. Furthermore, NVP was also considered as the photocurable monomer
and varied percentages with respect to RM257 to improve electro-optical performance of PNLC cells.
Except E7, the chemical structures of all other ingredients are shown in [22]. Figure 1a illustrates the
setup for processing holographic exposure, where a red He–Ne laser beam (λ = 632.8 nm, LASOS,
Jena, Germany) serially passed through the attenuator, polarizer, and beam expander to achieve
an s-polarization light beam with controllable intensity and optical quality. Holographic exposure
processes were executed by means of two coherent beams from the previous s-polarization beam
passing through a beam splitter with equal power intensity (0.1 mW/cm2) to expose the LC cell. Both
interference beams were incident to the LC cell with an angle of 160◦ between their wave vectors
to generate the interference patterns with pitch of 209 nm as shown in Figure 1b. Due to specific
molecular characteristics, the RM257 and NVP monomers were forced to move toward the regions
with higher light intensity during holographic exposure processes. Therefore, the interference patterns
generated by holographic exposure will possibly lead to the formed morphology of holographic
polymer networks in PLNC cells as schematically shown in Figure 1c. Finally, the smaller LC domains
are embedded in polymer networks to achieve light scattering reduction [13].
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Table 1. Ingredient percentages of the LC mixture filled in experimental PNLC cells for processing
holographic exposure.

Label of PNLC Cells RM257
(wt%)

NVP
(wt%)

E7
(wt%)

H–Nu–Blue–640
(wt%)

Borate–V
(wt%)

RM8 8 2 89.5 0.25 0.25
RM7 7 2 90.5 0.25 0.25
RM6 6 2 91.5 0.25 0.25
RM5 5 2 92.5 0.25 0.25

RM5N2 5 4 90.5 0.25 0.25

Crystals 2017, 7, 208  3 of 9 

 

Table 1. Ingredient percentages of the LC mixture filled in experimental PNLC cells for processing 
holographic exposure. 

Label of PNLC Cells RM257 
(wt%) 

NVP
(wt%) 

E7
(wt%) 

H–Nu–Blue–640 
(wt%) 

Borate–V
(wt%) 

RM8 8 2 89.5 0.25 0.25 
RM7 7 2 90.5 0.25 0.25 
RM6 6 2 91.5 0.25 0.25 
RM5 5 2 92.5 0.25 0.25 

RM5N2 5 4 90.5 0.25 0.25 

 
Figure 1. (a) Experimental setup for processing holographic exposure; (b) Schematic illustration of 
holographic interference patterns generated in cell to expose the materials of RM257 and NVP to be 
photopolymerized; (c) Schematic illustration of holographic polymer networks formed in the cell 
after holographic exposure processes. 

Figure 2 shows the setup used to measure the relative curves of voltage versus optical 
reflectance (V-R) of completely exposed PNLC cells. In the experiment, we utilized a mirror 
reflector to reflect the normally incident laser beam (λ = 1550 nm, THORLABS, Newton, USA) 
passing through the PNLC cell once. A detector was used to record the final light intensity after 
passing the PNLC cell twice with respect to applying various AC voltages (10 kHz square 
waveform) in PNLCs. 

 
Figure 2. Experimental setup for measuring the V-R curves of completed PNLC cells. The rubbing 
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Figure 1. (a) Experimental setup for processing holographic exposure; (b) Schematic illustration of
holographic interference patterns generated in cell to expose the materials of RM257 and NVP to be
photopolymerized; (c) Schematic illustration of holographic polymer networks formed in the cell after
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Figure 2 shows the setup used to measure the relative curves of voltage versus optical reflectance
(V-R) of completely exposed PNLC cells. In the experiment, we utilized a mirror reflector to reflect the
normally incident laser beam (λ = 1550 nm, THORLABS, Newton, USA) passing through the PNLC
cell once. A detector was used to record the final light intensity after passing the PNLC cell twice with
respect to applying various AC voltages (10 kHz square waveform) in PNLCs.
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3. Results and Discussion

Firstly, intensity loss due to light scattering in the PNLC cells was measured. Without a pair
of crossed polarizers, a laser beam (λ = 1550 nm) was normally incident to the completed PNLC
cell located 20 cm away from the laser position. An iris was used to prevent scattering light from
entering the detector and permit only light intensity along the initial incident direction. The measured
transmittance in different PNLC cells with respect to various applied voltages is shown in Figure 3a,
where transmittance in percentage was the transmittance ratios of cells versus the reference LC cell
filled with only E7 LCs. The completed PNLC cells with various concentrations of RM257 dopants
also possessed well and uniform homogeneous LC alignments as shown in the inserts of Figure 3a,
which are very different from the polymer-dispersed LC cells [23]. Therefore, all four PNLC cells
show good transmittance as high as 97% without applied voltage. A slight decrease of transmittance
compared with the cells filled with E7 LCs is from the mismatch of refractive indices, because the
ratios of refractive indices between E7 LCs and RM257 are no,E7 = 1.521/ne,E7 = 1.747 and no,RM257

= 1.508/ne,RM257 = 1.687 at λ = 589 nm, respectively. When electrically operating completed PNLC
cells, the micro size LC domains appeared that induced the light scattering in the LC cell, but the
samples RM7 and RM8 maintained the high transmittance even at a voltage of 140 Vrms. Although,
using holographic exposure to process LC cells usually improves light scattering, positive results are
also related to the concentrations of the RM257 dopant. If RM257 is used with too low a concentration,
it will not decrease light scattering as shown by the experimental results of the RM5 and RM6 cells.
Figure 3b shows the measured V-R curves for four experimental PNLC cells, where optical reflectance
was normalized to the maximum reflectance in a reference cell filled with only E7 LCs. Generally, the
generated polymer networks after holographic exposure in the PNLC cells provide more constrains
to LC molecules to increase operating voltages V2π for 2π phase modulation and Vth for threshold
voltages. Furthermore, the voltages of V2π and Vth are mainly related to the morphology of the polymer
networks and the size of LC microdomains [24,25]. Especially, the value of Vth approximately satisfied
the equation Vth = (d/D) × Vth,LC [26], where d is the cell gap, D is the average LC microdomains, and
Vth,LC is the threshold voltages of cells filled with LCs. By referred to [24,25], the higher concentrations
of monomer dopant in cells usually generate smaller LC microdomain sizes. Therefore, the values of
V2π and Vth are increased in the PNLC cells with higher concentrations. Although the RM7 and RM8
PNLC cells show good performance of V-R curves, the voltages of phase modulation V2π are also too
high for ideal operations, which are 98 Vrms and 123 Vrms, respectively.
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Figure 3. Measurements of transmittance and reflectance with respect to applied voltages in completed
PNLC cells with various RM257 concentrations: (a) the measurements of transmittance versus applied
voltages. The inserts show optical observations of four completed PNLC cells via the light box with
a pair of crossed polarizers; (b) the measurements of normalized reflectance curves versus applied
voltages in the same cells via the setup shown in Figure 2.
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The PNLC cell labeled RM5 possessed a low phase modulation voltage of 65 Vrms but suffered
more serious light scattering and inaccurate phase modulation control. Therefore, further investigations
were based on the conditions of the RM5 cell to improve optical performance. Due to considerations of
NVP as the photocurable monomer with various percentages instead of RM257 to improve performance
of PNLC cells, we doped more than 2 wt% NVP instead of RM257 in the previous RM5 cell and
labeled it RM5N2 to possibly induce a different polymer network morphology. Figure 4a shows the
comparisons of transmittances in RM7, RM5, and RM5N2 PNLC cells. Obviously, the RM5N2 cell
showed very similar results to the RM7 cell, the more than 2 wt% NVP doped in the RM5N2 cell
possibly achieved much smaller LC microdomains than the RM5 cell but close to the microdomain
sizes in the RM7 cell. Compared with the RM257 dopant with LC building block structure, the NVP
dopant has no such structure to provide homogeneous LC alignments. However, doping the RM5N2
cell with more than 2 wt% NVP still assisted and maintained a uniform LC alignment as shown in the
insert of Figure 4a. Figure 4b shows the comparisons of measured V-R curves in RM5 and RM5N2
cells, where the phase modulation voltage was 79 Vrms in the RM5N2 cell, which was higher than the
RM5 cell. A high phase modulation voltage was needed due to the much smaller LC microdomains
in the RM5N2 cell. Figure 5 shows the profiles of phase modulation versus applied voltages in RM8,
RM7, and RM5N2 PNLC cells as infrared phase modulators. The major phase modulation voltages
are listed and summarized in Table 2. As a result, the RM5N2 cell possessed a low phase modulation
voltage due to the more than 2 wt% NVP dopant, which reduced constrains between LC molecules
and generated polymer networks.
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Figure 4. Measurements of transmittance and reflectance with respect to applied voltages in RM5, RM7,
and RM5N2 PNLC cells: (a) Comparisons of transmittance and optical observations in the RM5N2 cell
via the light box with a pair of crossed polarizers; (b) Comparisons of normalized reflectance versus
applied voltages in RM5 and RM5N2 cells.
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Figure 5. Comparisons of 2π phase modulation in RM7, RM8, and RM5N2 cells as infrared phase
modulators for the light beam wavelength of λ = 1550 nm.
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Table 2. Typical voltages of phase modulations in the three fabricated phase modulators.

Label of PNLC Cells V0.5π (Vrms) V1.0π (Vrms) V1.5π (Vrms) V2.0π (Vrms)

RM8 66 80 98 120
RM7 57 69 80 95

RM5N2 45 59 68 79

Except for the previous statements to describe characteristics of the fabricated infrared phase
modulators, their optical response time was further measured and described in the following.
According to experimental results in Figure 5 and Table 2, the completed phase modulators (i.e.,
RM7, RM8, and RM5N2 cells) were electrically switched between on and off states with respect to
various applied voltages corresponding to individual phase modulations (i.e., 0.5π, 1.0π, 1.5π, and
2.0π) in the 4 ms duration. Figure 6a shows the response time of phase modulations in the RM8 cell
with respect to four applied voltages. Some ideal values of modulated phase were not achieved if
phase modulation voltages were applied according to the data in Figure 5, including the switching
voltages of V1.0π, V1.5π, and V2.0π. This issue was mainly attributed to the electrostriction effect of
polymer networks. We obtained the phase modulation voltage V2π in PNLC cells via measurements
of V-R curves and 1 s waiting time for each data point. During measurements of V-R curves, the
anisotropic polymer networks generated by the RM257 dopant were continuously deformed due
to higher electrical voltages, which also provided the phase variations in PNLC cells. Due to short
operation time in real phase modulations, the polymer networks were not seriously deformed to induce
unstable phase modulation control as previously described. The ideal and correct phase modulations
can be achieved with higher applied voltages [13] or a longer waiting time (about a few seconds) [20].
In this study, we applied voltages of 84, 110, and 135 Vrms to ideally achieve the 1.0π, 1.5π, and 2.0π
phase modulations as shown in Figure 6b. Thereafter, measurements of response time, including rising
and falling time, were based on applied voltages corresponding to 0.5π, 1.0π, 1.5π, and 2.0π phase
modulations. The rising time (τr) is defined as the time spent for 0% to 90% phase modulation, and
falling time (τf) is defined as the time spent for 100% to 10% phase modulation. Response time, phase
deviations, and required boost voltages are summarized in Table 3.
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Table 3. Summary of phase deviations, response time, and the required boost voltages in three phase
modulators with correct phase control.

RM8 RM7 RM5N2

V0.5π V1.0π V1.5π V2.0π V0.5π V1.0π V1.5π V2.0π V0.5π V1.0π V1.5π V2.0π
Phase deviation 0 0.1π 0.2π 0.25π 0 0 0.1π 0.15π 0 0 0 0.1π

Boost voltage (Vrms) 0 4 12 15 0 0 4 8 0 0 0 3
τr (ms) 0.72 0.31 0.18 0.14 1.21 0.72 0.43 0.29 1.69 0.87 0.59 0.38
τf (ms) 0.21 0.16 0.15 0.14 0.32 0.27 0.25 0.24 0.42 0.38 0.40 0.39

Average τr 0.34 ms 0.66 ms 0.88 ms
Average τf 0.17 ms 0.27 ms 0.40 ms

Figure 7 shows the response time of phase modulations in RM7 cells with four applied voltages
and the phase deviations for 1.5π and 2.0π phase modulations. Compared with experimental results in
the RM8 cell, the phase deviations were smaller, and the required boost voltages were also reduced.
The voltages of correct phase modulations of 1.5π and 2.0π were achieved with applied voltages of 84
and 103 Vrms. Finally, the response time of phase modulations in the RM5N2 cell is shown in Figure 8,
which shows only a slight phase deviation (about 0.1π) in the 2.0π phase modulation, and it can be
addressed with an applied voltage of 82 Vrms. The electrostriction effect was insignificant because
of the low phase modulation voltage in the RM5N2 cell for operating 2.0π phase modulation. Given
that polymer networks exist in PNLC cells providing more constrains, the free relaxation time (τ0) is
dependent on the average sizes of the LC microdomains (D) and approximately satisfied the equation
τ0 = γ1D2/K11π

2 [26], where γ1 is LC rotational viscosity and K11 is the LC splay elastic constant. In
general, the decay time is similar to τ0; rising time is more complicated to illustrate but is also related
to τ0 and applied voltage [6]. Due to larger sizes of LC microdomains generated in the RM7 cell, the
average rising time (about 0.66 ms) and falling time (about 0.27 ms) were slower than that in the RM8
cell (0.34 ms rising time and 0.17 ms falling time). According to results in Figure 4a, the average sizes
of the LC microdomains in the RM5N2 cell were possibly close to that in the RM7 cell, but the average
rising time (0.88 ms) and falling time (0.40 ms) were slower. It was attributed to the more NVP dopant
in the RM5N2 cell that reduced the degrees of constrains between the LC molecules and the polymer
networks [27].
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Figure 8. Measurements of response time in the RM5N2 cell for operating phase modulations.

4. Conclusions

We demonstrated RM257-doped PNLC cells processed via holographic exposure to realize
infrared phase modulators at λ = 1550 nm. As a result, the completed phase modulators possess a
fast response time (<1 ms) and were free of optical scattering in the range of 2π phase modulation.
However, the high operating voltages must be improved to prevent unstable phase modulation control
due to the electrostriction effect. Adding more than 2 wt% of a mono-acrylate monomer (NVP) in
PNLC cells significantly decreased the operating voltages and simultaneously maintained the phase
modulators without optical scattering. Moreover, the NVP dopant also effectively improved the
electrostriction effect. Finally, the optimal PNLC phase modulator was operated at a low voltage of
79 Vrms with negligible unstable phase modulation control and a fast response time (average rising
and falling times of 0.88 and 0.40 ms, respectively).
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