Electro-Infiltration of Cytochrome C into a Porous Silicon Network, and Its Effect on Nucleation and Protein Crystallization—Studies of the Electrical Properties of Porous Silicon Layer-Protein Systems for Applications in Electron-Transfer Biomolecular Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM Images of the Porous Silicon Infiltrated Structures
2.1.1. Structures Infiltrated Using Silane-Coupling Agents
2.1.2. Structures Infiltrated by the Electrochemical Migration Method
2.1.3. Structures Infiltrated with Crystallized Cytochrome C
2.2. Electrical Characterization
2.2.1. I–V Measurements of APTES and MPTMS Structures
2.2.2. I–V Measurements of Structures Obtained by the Electrochemical Migration Method
2.2.3. I–V Measurements of Structures after the Crystallization Process
2.3. Determination of Electrical Parameters
3. Materials and Methods
3.1. APTES and MPTMS Structures
3.1.1. PSi Preparation
3.1.2. Oxidation and Silane Stabilization
3.1.3. Drop Infiltration
3.2. Electrochemical Migration Method
3.3. Sample Preparation for I–V Measuurements
3.4. Crystallization Process
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Electrochemical Migration Cell
References
- Ksenofontova, O.; Vasin, A.; Egorov, V.; Bobyl’, A.; Soldatenkov, F.; Terukov, E.; Ulin, V.; Ulin, N.; Kiselev, O. Porous silicon and its applications in biology and medicine. Tech. Phys. 2014, 59, 66–77. [Google Scholar] [CrossRef]
- Anglin, E.; Cheng, L.; Freeman, W.; Sailor, M. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 2008, 60, 1266–1277. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Diaz-Fernandez, Y.; Gschneidtner, T.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single–molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Palma, J.; Li, Y.; Mujica, V.; Ratner, M.; Tao, N. Gate–controlled conductance switching in DNA. Nat. Commun. 2017, 8, 14471. [Google Scholar] [CrossRef] [PubMed]
- Rabinal, M. Organic molecules on silicon surface: A way to tune metal dependent Schottky barrier. Appl. Surf. Sci. 2016, 382, 41–46. [Google Scholar] [CrossRef]
- Amdursky, N.; Ferber, D.; Bortolotti, C.; Dolgikh, D.; Chertkova, R.; Pecht, I.; Sheves, M.; Cahen, D. Solid-State Electron Transport Via Cytochrome C Depends On Electronic Coupling To Electrodes and Across The Protein. Proc. Natl. Acad. Sci. USA 2014, 111, 5556–5561. [Google Scholar] [CrossRef] [PubMed]
- Amdursky, N.; Sepunaru, L.; Raichlin, S.; Pecht, I.; Sheves, M.; Cahen, D. Electron Transfer Proteins as Electronic Conductors: Significance Of The Metal and Its Binding Site in The Blue Cu Protein, Azurin. Adv. Sci. 2015, 2, 1400026. [Google Scholar] [CrossRef] [PubMed]
- Ron, I.; Sepunaru, L.; Itzhakov, S.; Belenkova, T.; Friedman, N.; Pecht, I.; Sheves, M.; Cahen, D. Proteins As Electronic Materials: Electron transport through solid-state protein monolayer junctions. J. Am. Chem. Soc. 2010, 132, 4131–4140. [Google Scholar] [CrossRef] [PubMed]
- De Groot, M.; Evers, T.; Merkx, M.; Koper, M. Electron transfer and ligand binding to cytochrome C immobilized on self-assembled monolayers. Langmuir 2007, 23, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Amdursky, N.; Pecht, I.; Sheves, M.; Cahen, D. Electron transport via cytochrome C on Si–H surfaces: Roles of Fe and Heme. J. Am. Chem. Soc. 2013, 135, 6300–6306. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Herr, A. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [PubMed]
- Márquez, J.; Cházaro-Ruiz, L.; Zimányi, L.; Palestino, G. Immobilization strategies and electrochemical evaluation of porous silicon based cytochrome C electrode. Electrochim. Acta 2014, 140, 550–556. [Google Scholar]
- Pareja-Rivera, C.; Cuéllar-Cruz, M.; Esturau-Escofet, N.; Demitri, N.; Polentarutti, M.; Stojanoff, V.; Moreno, A. Recent Advances in the understanding of the influence of electric and magnetic fields on protein crystal growth. Cryst. Growth Des. 2017, 17, 135–145. [Google Scholar] [CrossRef]
- Vikulov, V.; Strikha, V.; Skryshevsky, V.; Kilchitskaya, S.; Souteyrand, E.; Martin, J. Electrical features of the metal-thin porous silicon-silicon structure. J. Phys. D 2000, 33, 1957–1964. [Google Scholar] [CrossRef]
- Neamen, D. Semiconductor Physics and Devices, 1st ed.; McGraw-Hill: New York, NY, USA, 2012; pp. 337–349. [Google Scholar]
- Williams, E.; Davydov, A.; Motayed, A.; Sundaresan, S.; Bocchini, P.; Richter, L.; Stan, G.; Steffens, K.; Zangmeister, R.; Schreifels, J.; et al. Immobilization of streptavidin on 4H–Sic for biosensor development. Appl. Surf. Sci. 2012, 258, 6056–6063. [Google Scholar] [CrossRef]
- Piwoński, I.; Grobelny, J.; Cichomski, M.; Celichowski, G.; Rogowski, J. Investigation of 3-mercaptopropyltrimethoxysilane self–assembled monolayers on Au(111) surface. Appl. Surf. Sci. 2005, 242, 147–153. [Google Scholar] [CrossRef]
- Mirkin, N.; Jaconcic, J.; Stojanoff, V.; Moreno, A. High Resolution X-Ray Crystallographic structure of bovine heart cytochrome C and its application to the design of an electron transfer biosensor. Proteins Struct. Funct. Bioinform. 2007, 70, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Pérez, Y.; Eid, D.; Acosta, F.; Marín-García, L.; Jakoncic, J.; Stojanoff, V.; Frontana-Uribe, B.; Moreno, A. Electrochemically assisted protein crystallization of commercial cytochrome C without previous purification. Cryst. Growth Des. 2008, 8, 2493–2496. [Google Scholar] [CrossRef]
- Çakıcı, T.; Sağlam, M.; Güzeldir, B. The comparison of electrical characteristics of Au/N-Inp/In and Au/In2s3/N-Inp/In junctions at room temperature. Mater. Sci. Eng. B 2015, 193, 61–69. [Google Scholar] [CrossRef]
- Eltayyan, A. A new method to extract the electrical parameters from dark I-V: T experimental data of Cds/Cu(In,Ga)Se2 interface. Int. J. Adv. Res. Phys. Sci. (IJARPS) 2015, 2, 11–20. [Google Scholar]
- Sailor, M. Porous Silicon in Practice, 1st ed.; Wiley-VCH-Verl.: Weinheim, Germany, 2012; pp. 134–138. [Google Scholar]
- Sanishvili, R.; Margoliash, E.; Westbrook, M.; Westbrook, E.; Volz, K. Crystallization of wild-Type and mutant ferricytochromes C at low ionic strength: Seeding technique and x-ray diffraction analysis. Acta Crystallogr. Sect. D 1994, 50, 687–694. [Google Scholar] [CrossRef] [PubMed]
Sample | Section a | Section b | Section c |
---|---|---|---|
APTES | 0.18 | 4.62 | 12.92 |
MPTMS | 1.14 | 2.11 | 4.42 |
Sample | Thichness (μm) | Infiltration Time (h) |
---|---|---|
EM1 | 3 | 2:20 |
EM2 | 10 | 2:20 |
EM3 | 3 | 3:30 |
EM4 | 6 | 3:30 |
EM5 | 12 | 3:30 |
Sample | a | b |
---|---|---|
EM1 | 1.36 | 5.79 |
EM2 | 1.31 | 6.86 |
Sample | Slope (n) |
---|---|
EM3 | 1.21 |
EM4 | 1.32 |
EM5 | 1.60 |
M/Ox/Si | 1.24 |
M/PSi/Si | 1.54 |
Sample | (a) | (b) | (c) | Thickness (μm) |
---|---|---|---|---|
Control | 0.88 | 3.72 | 4.42 | 10 |
XTAL 1 | 0.96 | 11.79 | 50 | |
XTAL 2 | 1.09 | 6.35 | 5 |
Sample | Rc (Ω) | ϕB (eV) | J (A/cm2) |
---|---|---|---|
APTES | 0.19 | 1.56 | 32.33 |
MPTMS | 18,511.47 | 1.66 | 42.20 |
ME1 | 208.04 | 1.58 | 315.13 |
ME2 | 78.28 | 1.54 | 315.13 |
ME3 | 0.14 | 1.35 | 318.55 |
ME4 | 0.02 | 1.37 | 298.38 |
ME5 | 0.0097 | 1.36 | 310.30 |
XTAL1 | 900.65 | 1.58 | 0.408 |
XTAL2 | 2642.11 | 1.61 | 0.908 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-De la Rosa, L.E.; Moreno, A.; Pacio, M. Electro-Infiltration of Cytochrome C into a Porous Silicon Network, and Its Effect on Nucleation and Protein Crystallization—Studies of the Electrical Properties of Porous Silicon Layer-Protein Systems for Applications in Electron-Transfer Biomolecular Devices. Crystals 2017, 7, 194. https://doi.org/10.3390/cryst7070194
Serrano-De la Rosa LE, Moreno A, Pacio M. Electro-Infiltration of Cytochrome C into a Porous Silicon Network, and Its Effect on Nucleation and Protein Crystallization—Studies of the Electrical Properties of Porous Silicon Layer-Protein Systems for Applications in Electron-Transfer Biomolecular Devices. Crystals. 2017; 7(7):194. https://doi.org/10.3390/cryst7070194
Chicago/Turabian StyleSerrano-De la Rosa, Laura E., Abel Moreno, and Mauricio Pacio. 2017. "Electro-Infiltration of Cytochrome C into a Porous Silicon Network, and Its Effect on Nucleation and Protein Crystallization—Studies of the Electrical Properties of Porous Silicon Layer-Protein Systems for Applications in Electron-Transfer Biomolecular Devices" Crystals 7, no. 7: 194. https://doi.org/10.3390/cryst7070194
APA StyleSerrano-De la Rosa, L. E., Moreno, A., & Pacio, M. (2017). Electro-Infiltration of Cytochrome C into a Porous Silicon Network, and Its Effect on Nucleation and Protein Crystallization—Studies of the Electrical Properties of Porous Silicon Layer-Protein Systems for Applications in Electron-Transfer Biomolecular Devices. Crystals, 7(7), 194. https://doi.org/10.3390/cryst7070194