Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM
Abstract
1. Introduction
2. Formulation
2.1. GPLs-Reinforced Face Layers
2.1.1. Pattern I
2.1.2. Pattern II
2.1.3. Pattern III
2.2. Porous Core Layer
2.2.1. Porous-A
2.2.2. Porous-B
2.2.3. Porous-C
2.3. Elastic Foundation
2.4. Hygrothermal Conditions
2.5. Displacement Fields and Strains
- The transverse strains and stresses can be identified as the consequence of transverse displacement , which contains three elements; namely, the bending deflection , shear deflection , and stretching . All components are functions of r only.
- The middle-plane radial displacement u, is involved in Shimpi’s two-variable plate theory [44].
2.6. Nonlocal Strain Gradient Theory
2.7. Lorentz Magnetic Force
3. Governing Equations
4. Numerical Solution
5. Numerical Results and Discussion
6. Conclusions
- The increase of the elastic foundation parameters and graphene components increases plate stiffness, leading to a significant reduction in deflection.
- Because the moisture and temperature reduce plate stiffness, the central deflection and stresses increase as moisture and temperature rise; the sensitivity to temperature fluctuations is minimal when compared to moisture concentration changes.
- Increasing the porosity coefficient decreases the deflection and stresses because the porosities dampen the hygrothermal effects on the proposed plate.
- Raising the magnetic field parameter yields a reduction in the deflection and transverse shear stress.
- The presence of the nonlocal parameter diminishes plate strength, whereas this trend is reversed when increasing the strain gradient coefficient.
- It is anticipated that the current work may have potential uses in the design and development of nanoscale devices, including circular-gate transistors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Luz, G.M.; Mano, J.F. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Compos. Sci. Technol. 2010, 70, 1777–1788. [Google Scholar] [CrossRef]
- Witherspoon, C.; Zheng, P.; Chmielus, M.; Dunand, D.; Müllner, P. Effect of porosity on the magneto-mechanical behavior of polycrystalline magnetic shape-memory Ni–Mn–Ga foams. Acta Mater. 2015, 92, 64–71. [Google Scholar] [CrossRef]
- Sobczak, J.J.; Drenchev, L. Metallic functionally graded materials: A specific class of advanced composites. J. Mater. Sci. Technol. 2013, 29, 297–316. [Google Scholar] [CrossRef]
- Gallardo-López, Á.; Castillo-Seoane, J.; Muñoz-Ferreiro, C.; López-Pernía, C.; Morales-Rodríguez, A.; Poyato, R. Flexure strength and fracture propagation in zirconia ceramic composites with exfoliated graphene nanoplatelets. Ceramics 2020, 3, 78–91. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, K.; Fu, T.; Zhang, W. A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. Eur. Phys. J. Plus 2020, 135, 1–19. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Sahmani, S.; Aghdam, M.M.; Rabczuk, T. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 2018, 186, 68–78. [Google Scholar] [CrossRef]
- Amir, S.; Arshid, E.; Arani, M.R.G. Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads. Smart Struct. Syst. Int. J. 2019, 23, 429–447. [Google Scholar]
- Barati, M.R.; Zenkour, A.M. Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 2019, 26, 503–511. [Google Scholar] [CrossRef]
- Balázsi, K.; Almansoori, A.; Balázsi, C. Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements. Ceramics 2024, 7, 1758–1778. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J. Math. Sci. 1999, 97, 3840–3845. [Google Scholar] [CrossRef]
- Mindlin, R.D. Microstructure in Linear Elasticity. Columbia University New York Deptartment of Civil Engineering and Engineering Mechanics. 1963. Available online: https://apps.dtic.mil/sti/tr/pdf/AD0424156.pdf (accessed on 19 September 2024).
- Serpilli, M.; Rizzoni, R.; Ramos, R.R.; Lebon, F. A size-dependent model of strain gradient elastic laminated micro-beams with a weak adhesive layer. ZAMM J. Appl. Math. Mech. 2025, 105, e202400609. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [Google Scholar] [CrossRef]
- Gibson, R.F.; Ayorinde, E.O.; Wen, Y.F. Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2007, 67, 1–28. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the gradient approach–relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 2011, 49, 1367–1377. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Reddy, J. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [Google Scholar] [CrossRef]
- Kiani, K. Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 57, 179–192. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 2015, 97, 84–94. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.R.; Dabbagh, A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 2016, 107, 169–182. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Dabbagh, A. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater. Res. Express 2017, 4, 025003. [Google Scholar] [CrossRef]
- Abazid, M.A. The nonlocal strain gradient theory for hygrothermo-electromagnetic effects on buckling, vibration and wave propagation in piezoelectromagnetic nanoplates. Int. J. Appl. Mech. 2019, 11, 1950067. [Google Scholar] [CrossRef]
- Liu, D.; Geng, T.; Wang, H.; Esmaeili, S. Analytical solution for thermoelastic oscillations of nonlocal strain gradient nanobeams with dual-phase-lag heat conduction. Mech. Based Des. Struct. Mach. 2023, 51, 4946–4976. [Google Scholar] [CrossRef]
- Hong, J.; Wang, S.; Qiu, X.; Zhang, G. Bending and wave propagation analysis of magneto-electro-elastic functionally graded porous microbeams. Crystals 2022, 12, 732. [Google Scholar] [CrossRef]
- Wang, S.; Hong, J.; Yin, S.; Zhang, G. Isogeometric analysis of magneto-electro-elastic functionally graded Mindlin microplates. Thin-Walled Struct. 2024, 198, 111740. [Google Scholar] [CrossRef]
- Sadeghian, M.; Palevicius, A.; Griskevicius, P.; Janusas, G. Nonlinear Analysis of the Multi-Layered Nanoplates. Mathematics 2024, 12, 3545. [Google Scholar] [CrossRef]
- Sadeghian, M.; Jamil, A.; Palevicius, A.; Janusas, G.; Naginevicius, V. The Nonlinear Bending of Sector Nanoplate via Higher-Order Shear Deformation Theory and Nonlocal Strain Gradient Theory. Mathematics 2024, 12, 1134. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Zenkour, A.M.; Sobhy, M. Hygrothermal buckling of smart graphene/piezoelectric nanocomposite circular plates on an elastic substrate via DQM. Mathematics 2022, 10, 2638. [Google Scholar] [CrossRef]
- Abdelrahman, A.A.; Saleem, H.A.; Abdelhaffez, G.S.; Eltaher, M.A. On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity. Mathematics 2023, 11, 1162. [Google Scholar] [CrossRef]
- Do, N.T.; Tran, T.T.; Pham, Q.H.; Trai, V.K. The nonlinear transient thermoelastic analysis of functionally graded sandwich plates rested on partially elastic foundations. Eng. Sci. Technol. Int. J. 2025, 70, 102174. [Google Scholar] [CrossRef]
- Ozalp, A.F.; Esen, I. Wave dispersion analysis with FGM face layers and GPL-reinforced metallic foam core thermally loaded sandwich nanoplate using NSGT: AF Ozalp, I. Esen. Arch. Appl. Mech. 2025, 95, 217. [Google Scholar] [CrossRef]
- Song, M.; Kitipornchai, S.; Yang, J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 2017, 159, 579–588. [Google Scholar] [CrossRef]
- Song, M.; Yang, J.; Kitipornchai, S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Part B Eng. 2018, 134, 106–113. [Google Scholar] [CrossRef]
- Sobhy, M.; Abazid, M.A.; Al Mukahal, F.H. Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions. Adv. Mech. Eng. 2022, 14, 16878132221091005. [Google Scholar] [CrossRef]
- Sobhy, M.; Alsaleh, F. Nonlinear bending of FG metal/graphene sandwich microplates with metal foam core resting on nonlinear elastic foundations via a new plate theory. Mech. Based Des. Struct. Mach. 2023, 52, 3842–3869. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Taheri, F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 2020, 252, 112700. [Google Scholar] [CrossRef]
- Al Muhammadi, M.F.; Al Mukahal, F.H.; Sobhy, M. A Higher-Order Theory for Nonlinear Dynamic of an FG Porous Piezoelectric Microtube Exposed to a Periodic Load. Mathematics 2024, 12, 3422. [Google Scholar] [CrossRef]
- Bamdad, M.; Mohammadimehr, M.; Alambeigi, K. Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution. J. Vib. Control. 2019, 25, 2875–2893. [Google Scholar] [CrossRef]
- Abazid, M.A.; Zenkour, A.M.; Sobhy, M. Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory. Mech. Based Des. Struct. Mach. 2022, 50, 1831–1850. [Google Scholar] [CrossRef]
- Pham, Q.H.; Tran, V.K.; Tran, T.T.; Nguyen-Thoi, T.; Nguyen, P.C.; Pham, V.D. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation. Case Stud. Therm. Eng. 2021, 26, 101170. [Google Scholar] [CrossRef]
- Tran, T.T.; Nguyen, P.C.; Pham, Q.H. Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN. Case Stud. Therm. Eng. 2021, 24, 100852. [Google Scholar] [CrossRef]
- Sobhy, M. Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J. Sandw. Struct. Mater. 2021, 23, 1662–1700. [Google Scholar] [CrossRef]
- Shimpi, R.P. Refined plate theory and its variants. AIAA J. 2002, 40, 137–146. [Google Scholar] [CrossRef]
- Zenkour, A.M. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos. Struct. 2018, 201, 38–48. [Google Scholar] [CrossRef]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Touratier, M. An efficient standard plate theory. Int. J. Eng. Sci. 1991, 29, 901–916. [Google Scholar] [CrossRef]
- Soldatos, K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 1992, 94, 195–220. [Google Scholar] [CrossRef]
- Karama, M.; Afaq, K.; Mistou, S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 2003, 40, 1525–1546. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 1992, 30, 1279–1299. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Brodsky, A.; Urbakh, M. The influence of the microscopic structure of surfaces on the optical properties of metals. Prog. Surf. Sci. 1984, 15, 121–244. [Google Scholar] [CrossRef]
- Wang, H.; Dong, K.; Men, F.; Yan, Y.; Wang, X. Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 2010, 34, 878–889. [Google Scholar] [CrossRef]
- Shu, C. Differential Quadrature and Its Application in Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Reddy, J.; Wang, C.; Kitipornchai, S. Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A Solids 1999, 18, 185–199. [Google Scholar] [CrossRef]
- Yun, W.; Rongqiao, X.; Haojiang, D. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Compos. Struct. 2010, 92, 1683–1693. [Google Scholar] [CrossRef]
Error | Error | Error | Error | |||||
---|---|---|---|---|---|---|---|---|
5 | - | - | - | - | ||||
7 | ||||||||
9 | ||||||||
11 | ||||||||
13 | ||||||||
15 | 0 | |||||||
17 | 0 | |||||||
19 | 0 | 0 |
BC | s | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ref. [55] | Present | Ref. [55] | Present | Ref. [55] | Present | Ref. [55] | Present | ||
simply | 0 | 10.396 | 10.396 | 10.481 | 10.480 | 10.623 | 10.621 | 10.822 | 10.818 |
2 | 5.714 | 5.713 | 5.756 | 5.754 | 5.826 | 5.822 | 5.925 | 5.918 | |
4 | 5.223 | 5.222 | 5.261 | 5.259 | 5.325 | 5.320 | 5.414 | 5.406 | |
6 | 4.970 | 4.970 | 5.007 | 5.005 | 5.069 | 5.065 | 5.155 | 5.147 | |
8 | 4.812 | 4.812 | 4.848 | 4.847 | 4.909 | 4.905 | 4.993 | 4.987 | |
10 | 4.704 | 4.703 | 4.739 | 4.738 | 4.799 | 4.796 | 4.882 | 4.876 | |
15 | 4.538 | 4.538 | 4.573 | 4.572 | 4.632 | 4.630 | 4.714 | 4.710 | |
20 | 4.446 | 4.445 | 4.480 | 4.480 | 4.538 | 4.536 | 4.619 | 4.616 | |
Clamped | 0 | ||||||||
2 | |||||||||
4 | |||||||||
6 | |||||||||
8 | |||||||||
10 | |||||||||
15 | |||||||||
20 |
BC | s | ||||||||
---|---|---|---|---|---|---|---|---|---|
FEM [56] | Present | FEM [56] | Present | FEM [56] | Present | FEM [56] | Present | ||
simply | 0 | 10.390 | 10.396 | 10.459 | 10.480 | 10.574 | 10.621 | 10.736 | 10.818 |
2 | 5.709 | 5.713 | 5.744 | 5.754 | 5.803 | 5.822 | 5.886 | 5.918 | |
4 | 5.217 | 5.222 | 5.248 | 5.259 | 5.300 | 5.320 | 5.372 | 5.406 | |
6 | 4.965 | 4.970 | 4.994 | 5.005 | 5.043 | 5.065 | 5.112 | 5.147 | |
8 | 4.806 | 4.812 | 4.835 | 4.847 | 4.883 | 4.905 | 4.951 | 4.987 | |
10 | 4.697 | 4.703 | 4.726 | 4.738 | 4.773 | 4.796 | 4.840 | 4.876 | |
15 | 4.531 | 4.538 | 4.559 | 4.572 | 4.606 | 4.630 | 4.672 | 4.710 | |
20 | 4.437 | 4.445 | 4.465 | 4.480 | 4.512 | 4.536 | 4.578 | 4.616 | |
Clamped | 0 | ||||||||
2 | |||||||||
4 | |||||||||
6 | |||||||||
8 | |||||||||
10 | |||||||||
15 | |||||||||
20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Mukahal, F.H.H.; Sobhy, M.; Al-Ali, A.H.K. Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM. Crystals 2025, 15, 827. https://doi.org/10.3390/cryst15090827
Al Mukahal FHH, Sobhy M, Al-Ali AHK. Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM. Crystals. 2025; 15(9):827. https://doi.org/10.3390/cryst15090827
Chicago/Turabian StyleAl Mukahal, Fatemah H. H., Mohammed Sobhy, and Aamna H. K. Al-Ali. 2025. "Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM" Crystals 15, no. 9: 827. https://doi.org/10.3390/cryst15090827
APA StyleAl Mukahal, F. H. H., Sobhy, M., & Al-Ali, A. H. K. (2025). Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM. Crystals, 15(9), 827. https://doi.org/10.3390/cryst15090827