Coaxial Wire Feeding-Friction Stir Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Macroscopic Morphology
3.2. Microstructure
3.3. Mechanical Properties
3.4. Tensile Properties of Closed-Loop Additive Components
4. Conclusions
- CWF-FSAM realizes top wire feeding by coaxially nesting a fixed shaft inside the stirring shaft and machining a through-type wire feeding channel along the circumferential direction of the fixed shaft. The components prepared based on CWF-FSAM have dense interlayer bonding and no obvious defects, which verifies the feasibility of the device.
- Under the friction stir action of the stirring pin, the CWF-FSAM-deposited components obtain uniform and fine equiaxed grains. The average grain sizes of the top, middle, and bottom parts are 3.52 µm, 3.35 µm, and 4.07 µm, respectively. The grain size distribution in each region is uniform, with no significant differences.
- The strengths in the BD direction, top, middle, and bottom parts are 123.4 ± 0.27 MPa, 124.3 ± 1.29 MPa, 123.3 ± 2.59 MPa, and 126.4 ± 1.27 MPa, respectively, all reaching 70% of the wire strength. Compared with the wire, the plasticity of the CWF-FSAM structural components is significantly improved.
- The average hardness values of the left, middle and right parts of the CWF-FSAM structural components are 38.78 ± 0.93 HV, 39.54 ± 0.99 HV, and 39.59 ± 1.49 HV, respectively, reaching 80% of the wire hardness. The hardness difference between different regions is not obvious, indicating that the components have good mechanical isotropy.
- Closed-loop components were continuously prepared in the counterclockwise direction. The strengths of the square closed-loop component at the overlapping point, linear region, and corner are 124.45 ± 1.67 MPa, 125.88 ± 0.43 MPa, and 126.95 ± 1.26 MPa, respectively. The strength at the overlapping point does not decrease due to the increase in tool lifting speed, which further confirms the uniformity of the mechanical properties of the CWF-FSAM components.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jingbin, Z.; Lei, G.; Weiqiang, Z.; Xifeng, C. Research progress on friction stir additive manufacturing technology. Therm. Work. Technol. 2024, 53, 30–38. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Yang, B.; Wang, J.; Wang, Z.; Li, Y. Unveiling the mechanism of texture evolution in AZ31B Mg alloy during additive friction stir deposition. J. Alloys Compd. 2025, 1011, 178404. [Google Scholar] [CrossRef]
- Lei, S.; Yang, L.; Yichen, X.; Chuansong, W.; Huijie, L. Research progress of metal solid phase additive manufacturing based on friction stir. J. Mater. Eng. 2022, 50, 1–14. [Google Scholar] [CrossRef]
- Lei, W.; Bingheng, L. Research on additive manufacturing technology and industrial development in our country. Strateg. Study CAE 2022, 24, 202–211. [Google Scholar] [CrossRef]
- Lu, I.K.; Reynolds, A.P. Innovative friction stir additive manufacturing of cast 2050 Al–Cu–Li aluminum alloy. Prog. Addit. Manuf. 2021, 6, 471–477. [Google Scholar] [CrossRef]
- Hongyu, D.; Shuting, W.; Kang, Y.; Chaoping, S.; Fan, W.; Chao, C.; Yanbing, T.; Zhiyong, J. Research progress on domestic and foreign standards for additive manufacturing. Prog. Mater. China 2020, 39, 955–961. [Google Scholar] [CrossRef]
- Yao, J.; Dai, G.; Guo, Y.; Li, W.; Sun, Z.; Shen, Z.; Luo, K.; Chang, H.; Zhou, L. Microstructure and properties of solid-state additive manufactured Mg–10Li–3Al–3Zn magnesium alloy. J. Mater. Res. Technol. 2023, 25, 4820–4832. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhang, H.; Zhang, J.; He, P.; Shao, M.; Zhu, X.; Fu, Y. Research progress of friction stir additive manufacturing technology. Acta Metall. Sin. 2022, 59, 106–124. [Google Scholar] [CrossRef]
- Di Pompeo, V.; Santecchia, E.; Santoni, A.; Sleem, K.; Cabibbo, M.; Spigarelli, S. Microstructure and defect analysis of 17-4PH stainless steel fabricated by the Bound Metal Deposition additive manufacturing technology. Crystals 2023, 13, 1312. [Google Scholar] [CrossRef]
- Shao, J.; Samaei, A.; Xue, T.; Xie, X.; Guo, S.; Cao, J.; MacDonald, E.; Gan, Z. Additive friction stir deposition of metallic materials: Process, structure and properties. Mater. Des. 2023, 234, 112356. [Google Scholar] [CrossRef]
- Agrawal, P.; Haridas, R.S.; Yadav, S.; Thapliyal, S.; Gaddam, S.; Verma, R.; Mishra, R.S. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips. Addit. Manuf. 2021, 47, 102259. [Google Scholar] [CrossRef]
- Kar, A.; Kumar, S.; Kailas, S.V. Developing multi-layered 3D printed homogenized structure using solid state deposition method. Mater. Charact. 2023, 199, 112770. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Lu, L.; Yang, Z.; Ren, X.; Zhang, X. The effect of heat treatment on the microstructure and mechanical properties of multilayer AA6061 alloy fabricated by additive friction stir deposition. Mater. Today Commun. 2024, 38, 108078. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, T.; Sun, Z.; Feng, S.; Ma, L.; Wang, W.; Su, Y.; Xu, Y.; Li, W. Screw-fed powder-based additive friction stir deposition: A study on pure aluminum. J. Mater. Process. Technol. 2025, 337, 118730. [Google Scholar] [CrossRef]
- Gong, J.; Wei, K.; Liu, M.; Song, W.; Li, X.; Zeng, X. Microstructure and mechanical properties of AlSi10Mg alloy built by laser powder bed fusion/direct energy deposition hybrid laser additive manufacturing. Addit. Manuf. 2022, 59, 103160. [Google Scholar] [CrossRef]
- Markl, M.; Tinat, M.R.A.; Berger, T.; Westrich, Y.; Renner, J.; Koerner, C. In-situ electron beam characterization for electron beam powder bed fusion. Addit. Manuf. 2024, 96, 104567. [Google Scholar] [CrossRef]
- Karmakar, S.; Swarnkar, R.; Pal, S.K. Effect of multi-layer deposition in solid-state friction stir surfacing-based additive manufacturing for fabrication of large-scale metal product. J. Mater. Process. Technol. 2023, 320, 118107. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Li, J.; Xie, R.; Chen, Y.; Huang, N.; Chen, S.; Xiao, J.; Chen, S. Solid-state friction rolling repair technology for various forms of defects through multi-layer multi-pass deposition. J. Manuf. Processes 2024, 127, 62–76. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, X.; Wang, L.; Wang, X.; Zhan, X. The microstructure diversity in different areas of the ring-route Al 6061-T6 additive zone by friction stir additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 128, 4857–4871. [Google Scholar] [CrossRef]
- Korgancı, M.; Bozkurt, Y. Recent developments in additive friction stir deposition (AFSD). J. Mater. Res. Technol. 2024, 30, 4572–4583. [Google Scholar] [CrossRef]
- Gao, H.; Li, H. Friction additive manufacturing technology: A state-of-the-art survey. Adv. Mech. Eng 2021, 13, 16878140211034431. [Google Scholar] [CrossRef]
- Hang, Z.Y.; Hahn, G.D. Potential and challenges for large-scale near-net-shaping of 7xxx aerospace grade aluminum via additive friction stir deposition. Mater. Lett. 2023, 19, 100217. [Google Scholar] [CrossRef]
- Gandra, J.; Krohn, H.; Miranda, R.; Vilaça, P.; Quintino, L.; dos Santos, J.F. Friction surfacing—A review. J. Mater. Process. Technol. 2014, 214, 1062–1093. [Google Scholar] [CrossRef]
- Li, H.; Cao, B.; Gao, H.; Wang, B.; Zhou, J. Multilayer friction surfacing of AA6061 aluminum alloy on 316L steel plate. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 727–736. [Google Scholar] [CrossRef]
- Seidi, E.; Miller, S.F. Thermo-mechanical finite element analysis of the solid-state metal deposition via lateral friction surfacing. CIRP J. Manuf. Sci. Technol. 2024, 50, 127–139. [Google Scholar] [CrossRef]
- Hu, X.; Luo, Z.; Liu, S.; Ren, Y.; Long, W. Effect of Stirring Needle Length on the Microstructures and Properties of A380/6061 Dissimilar Aluminium Alloy FSW Joints. Materials 2025, 18, 1621. [Google Scholar] [CrossRef]
- Li, Y.; He, C.; Wei, J.; Zhang, Z.; Tian, N.; Qin, G.; Zhao, X. Restirring and reheating effects on microstructural evolution of Al–Zn–Mg–Cu alloy during underwater friction stir additive manufacturing. Materials 2022, 15, 3804. [Google Scholar] [CrossRef]
- Chen, G.; Wu, K.; Wang, Y.; Sun, Y.; Wang, X.; Zhu, Z.; Hu, F. Quantitative study on the correlation between microstructure and mechanical properties of additive friction stir deposited 6061-T6 Al-Mg-Si alloy. J. Mater. Res. Technol. 2023, 25, 6725–6736. [Google Scholar] [CrossRef]
- Blindheim, J.; Welo, T.; Steinert, M. First demonstration of a new additive manufacturing process based on metal extrusion and solid-state bonding. Int. J. Adv. Manuf. Technol. 2019, 105, 2523–2530. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Khodabakhshi, F.; Gerlich, A. Friction-forging tubular additive manufacturing (FFTAM): A new route of solid-state layer-upon-layer metal deposition. J. Mater. Res. Technol. 2020, 9, 15273–15285. [Google Scholar] [CrossRef]
- Xie, R.; Shi, Y.; Liu, H.; Chen, S. A novel friction and rolling based solid-state additive manufacturing method: Microstructure and mechanical properties evaluation. Mater. Today Commun. 2021, 29, 103005. [Google Scholar] [CrossRef]
- Rezaeinejad, S.; Strik, D.; Visser, R.; Bor, T.; Luckabauer, M.; Akkerman, R. Solid-state additive manufacturing of AA6060 employing friction screw extrusion additive manufacturing. J. Miner. Met. Mater. Soc. 2023, 75, 4199–4211. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Meng, X.; Zhao, Y.; Sun, S.; Li, J.; Chen, J.; Chen, H.; Ma, X.; Wang, N.; et al. Wire-based friction stir additive manufacturing towards isotropic high-strength-ductility Al-Mg alloys. Virtual Phys. Prototyp. 2024, 19, e2417369. [Google Scholar] [CrossRef]
- Chen, H.; Meng, X.; Chen, J.; Xie, Y.; Wang, J.; Sun, S.; Zhao, Y.; Li, J.; Wan, L.; Huang, Y. Wire-based friction stir additive manufacturing. Addit. Manuf. 2023, 70, 103557. [Google Scholar] [CrossRef]
- Chen, H.; Zou, N.; Xie, Y.; Meng, X.; Ma, X.; Wang, N.; Huang, Y. Wire-based friction stir additive manufacturing of AlCu alloy with forging mechanical properties. J. Manuf. Processes 2025, 133, 354–366. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, T.; Feng, X.; Xie, Y.; Su, Y.; Sun, Z.; Wang, W.; Xu, Y.; Li, W. Investigation on in-situ tensile behaviors of 6061 aluminum alloy fabricated by wire additive friction stir deposition. J. Alloys Compd. 2024, 1008, 176780. [Google Scholar] [CrossRef]
- Bor, T.; De Leede, M.; Deunk, F.; Lind, J.; Lievestro, W.; Smit, H.J.; Ariës, R.; Dolas, V.; Helthuis, N.; Luckabauer, M.; et al. Friction screw extrusion additive manufacturing of an Al-Mg-Si alloy. Addit. Manuf. 2023, 72, 103621. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Meng, X.; Zhang, R. A Rotary Chopping Type Friction Stir Additive Manufacturing Device and Method. China Patent CN115647560B, 5 September 2023. [Google Scholar]
- Sun, X.; Xie, Y.; Meng, X.; Zhang, Z.; Tian, H.; Dong, W.; Dong, J.; Ma, X.; Wang, N.; Huang, Y. Wire-based friction stir additive manufacturing of AZ31B magnesium alloy: Precipitate behavior and mechanical properties. J. Magnes. Alloy 2025. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Zn | Ti | V | Al |
---|---|---|---|---|---|---|---|---|---|
6061 | 4.7 | 0.21 | 0.02 | 0.001 | 0.03 | 0.04 | 0.002 | 0.008 | Bal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, R.; Zhu, X.; Cheng, X.; Li, S. Coaxial Wire Feeding-Friction Stir Additive Manufacturing. Crystals 2025, 15, 784. https://doi.org/10.3390/cryst15090784
Liu M, Wang R, Zhu X, Cheng X, Li S. Coaxial Wire Feeding-Friction Stir Additive Manufacturing. Crystals. 2025; 15(9):784. https://doi.org/10.3390/cryst15090784
Chicago/Turabian StyleLiu, Mengmeng, Rui Wang, Xiaohu Zhu, Ximing Cheng, and Songmo Li. 2025. "Coaxial Wire Feeding-Friction Stir Additive Manufacturing" Crystals 15, no. 9: 784. https://doi.org/10.3390/cryst15090784
APA StyleLiu, M., Wang, R., Zhu, X., Cheng, X., & Li, S. (2025). Coaxial Wire Feeding-Friction Stir Additive Manufacturing. Crystals, 15(9), 784. https://doi.org/10.3390/cryst15090784