Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study
Abstract
1. Introduction
2. Background
2.1. A Matter of Frames
2.2. Cassini-like Curves
Infinitesimal Rotation and Small Deviation
3. A Roadmap for Stress and Misalignment Effect Measurement in Lead Tungstate and Other Tetragonal Crystals
3.1. Stressed Lead Tungstate Crystals
3.1.1. Conoscopic Observations in the Direction of the c-Axis (Homeotropic Alignment)
- The direction coincides with the axis.
- The mean stresses along the c-axis direction of the crystal specimen are zero, i.e.,
- The stress is accordingly a plane stress in the plane orthogonal to the c-axis:
- The intersections of the unstressed Bertin surfaces with the plane are the circumferences parameterized on N,
3.1.2. Conoscopic Observations in the Direction Orthogonal to the a-c-Axes’ Plane Alignment
- The observation direction is , which we force to coincide with one of the a-axes.
- The mean stresses along the a-axis direction of the crystal specimen are zero, i.e.,
- The stress is accordingly a plane stress in the plane orthogonal to one of the a-axes:
- The intersections of the unstressed Bertin surfaces with the plane are
- The eigenvalues of are greater than the components of , namely
- The differences between the eigenvalues of are greater than the components of :
3.2. Misalignment of Crystallographic Directions of Lead Tungstate and Other Tetragonal Crystals
3.2.1. No Information About Both the Rotation Amplitude and the Axis of
3.2.2. No Information About the Axis of but the Rotation Amplitude Is Small
3.2.3. Information About Both the Amplitude and the Axis of
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CCC | CERN R&D Experiment 18 “Crystal Clear Collaboration” |
PANDA | Anti-Proton Annihilation at Darmstadt Experiment |
XRD | X-Ray Diffraction |
References
- Bandiera, L.; Baryshevsky, V.G.; Canale, N.; Carsi, S.; Cutini, S.; Daví, F.; De Salvador, D.; Gianoli, A.; Guidi, V.; Hauylavets, V.; et al. A highly-compact and ultra-fast homogeneous electromagnetic calorimeter based on oriented lead tungstate crystals. Front. Phys. Sec. Radiat. Detect. Imaging 2023, 11, 1254020. [Google Scholar] [CrossRef]
- Monti-Guarnieri, P.; Bandiera, L.; Canale, N.; Carsi, S.; De Salvador, D.; Guidi, V.; Hauylavets, V.; Lezzani, G.; Longo, F.; Malagutti, L.; et al. Particle identification capability of a homogeneous calorimeter composed of oriented crystals. J. Instrum. 2024, 19, P10014. [Google Scholar] [CrossRef]
- Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M. Electromagnetic Processes at High Energies in Oriented Single Crystals; World Scientific Publishing Company: Singapore, 1998. [Google Scholar]
- Bandiera, L.; Bagli, E.; Berra, A.; Bolognini, D.; Dalpiaz, P.; Della Mea, G.; De Salvador, D.; Guidi, V.; Hasan, S.; Lietti, D.; et al. On the radiation accompanying volume reflection. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 309, 135–140. [Google Scholar] [CrossRef]
- Frocht, M.M. Photoelasticity; Wiley: New York, NY, USA, 1941. [Google Scholar]
- Riley, W.F.; Dally, J.W. Experimental Stress Analysis; Mc Graw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Ajovalasit, A.; Petrucci, G.; Scafidi, M. Review of RGB photoelasticity. Opt. Lasers Eng. 2015, 68, 58–73. [Google Scholar] [CrossRef]
- Ramesh, K. Digital Photoelasticity: Advanced Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Rastogi, P.K. Photomechanics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Ewing, J.A. Photo-Elasticity; Nature Publishing Group: London, UK, 1932. [Google Scholar]
- Montalto, L.; Paone, N.; Scalise, L.; Rinaldi, D. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging. Rev. Sci. Instrum. 2015, 86, 063102. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, D.; Montalto, L.; Paone, N.; Scalise, L. Inspection of birefringent media by photoelasticity: From diffuse light polariscope to laser conoscopic technique. Opt. Eng. 2015, 54, 081210. [Google Scholar] [CrossRef]
- Natali, P.P.; Montalto, L.; Daví, F.; Rinaldi, D.; Scalise, L. Optimization of the photoelastic fringe pattern processing for the stress evaluation in scintillating anisotropic media. In Proceedings of the I2MTC Turin, 2017, IEEE International Instrumentation and Measurement Technology Conference, Turin, Italy, 22–25 May 2017; p. 7969824. [Google Scholar] [CrossRef]
- Natali, P.P.; Montalto, L.; Scalise, L.; Daví, F.; Paone, N.; Rinaldi, D. Fringe modelling and Photoelastic stress Measurement method in tetragonal PWO observed in the plane normal to a crystallographic a-axis. J. Instrum. 2020, 15, P09037. [Google Scholar] [CrossRef]
- Natali, P.P.; Cherubini, F.; Daví, F.; Montalto, L.; Rinaldi, D. Optimization of the photoelastic conoscopic fringe pattern processing for the stress measurement on uniaxial PWO crystal cut parallel to the a-c plane and with variable thickness. J. Instrum. 2022, 17, P02021. [Google Scholar] [CrossRef]
- Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Daví, F. Photoelastic sphenoscopic analysis of crystals. Rev. Sci. Instrum. 2016, 87, 015113. [Google Scholar] [CrossRef]
- Natali, P.P.; Montalto, L.; Daví, F.; Mengucci, P.; Ciriaco, A.; Paone, N.; Rinaldi, D. Theoretical and experimental evaluation of piezo-optic parameters and photoelastic constants in Tetragonal PWO. Appl. Opt. 2018, 57, 730–737. [Google Scholar] [CrossRef]
- Daví, F.; Rinaldi, D.; Montalto, L. On the photoelastic constants and the Brewster law for stressed tetragonal crystals. Math. Model. Appl. Sci. 2018, 41, 3103–3116. [Google Scholar]
- Daví, F.; Rinaldi, D.; Montalto, L. On the photoelastic constants for stressed anisotropic crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 947, 162782. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Wahlstrom, E.E. Optical Crystallography; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Sirotin, Y.I.; Shaskolskaya, M.P. Fundamentals of Crystal Physics; MIR Publishers: Moscow, Russia, 1982. [Google Scholar]
- Perelomova, M.V.; Tagieva, M.M. Problems in Crystal Physics with Solutions; MIR Publishers: Moscow, Russia, 1983. [Google Scholar]
- Mytsyk, B.G.; Demyanyshyn, N.M.; Kost, Y.P. Analytical relations describing piezooptic effect in tetragonal crystals. Ukr. J. Phys. Opt. 2013, 14, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Daví, F. On the Bertin Surfaces for Photoelastic Crystals. J. Opt. Soc. Am. A 2015, 32, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Mytsyk, B.G.; Andrushchak, A.S.; Vynnyk, D.M.; Demyanyshyn, D.M.; Kost, Y.P.; Kityk, A.V. Characterization of photoelastic materials by combined Mach-Zehnder and conoscopic interferometry: Application to tetragonal lithium tetraborate crystals. Opt. Lasers Eng. 2020, 127, 105991. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Tieu, K.; Liu, Y.; Wang, R.; Li, J. Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis. Acta Metall. Sin. Engl. Lett. 2019, 32, 452–460. [Google Scholar] [CrossRef]
- Feng, S.; Xu, Z. Strain Characterization in Two-Dimensional Crystals. Materials 2021, 14, 4460. [Google Scholar] [CrossRef]
- Erinosho, T.O.; Collins, D.M.; Wilkinson, A.J.; Todd, R.I.; Dunne, F.P.E. Assessment of X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading. Int. J. Plast. 2016, 83, 1–18. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Li, Z.; Liu, Y.; Wang, J.T. Path Dependency of Plastic Deformation in Crystals: Work Hardening, Crystallographic Rotation and Dislocation Structure Evolution. Crystals 2022, 12, 999. [Google Scholar] [CrossRef]
- Tereshina-Chitrova, E.A.; Pourovskii, L.V.; Khmelevskyi, S.; Horak, L.; Bao, Z.; Mackova, A.; Malinsky, P.; Gouder, T.; Caciuffo, R. Strain-driven Switching Between Antiferromagnetic States in Frustrated Antiferromagnet UO2 Probed by Exchange Bias Effect. Adv. Funct. Mater. 2024, 34, 2311895. [Google Scholar] [CrossRef]
- Montalto, L.; Natali, P.P.; Scalise, L.; Paone, N.; Daví, F.; Rinaldi, D.; Barucca, G.; Mengucci, P. Quality Control and Structural Assessment of Anisotropic Scintillating Crystals. Crystals 2019, 9, 376. [Google Scholar] [CrossRef]
- Cocozzella, N.; Lebeau, M.; Majni, G.; Paone, N.; Rinaldi, D. Quality inspection of anisotropic scintillating lead tungstate (PbWO4) crystals through measurement of interferometric fringe pattern parameters. Nucl. Instrum. Methods Phys. Res. Sect. A 2001, 469, 331–339. [Google Scholar] [CrossRef]
- Lebeau, M.; Gobbi, L.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D. Mapping residual stresses in PbWO4 crystals using photoelastic analysis. Nucl. Instrum. Methods Phys. Res. A 2005, 537, 154–158. [Google Scholar] [CrossRef]
- Rinaldi, D.; Ciriaco, A.; Lebeau, M.; Paone, N. Quality control on pre-serial bridgman production of PbWO4 scintillating crystals by means of photoelasticity. Nucl. Instrum. Methods Phys. Res. A 2010, 615, 254–258. [Google Scholar] [CrossRef]
- Van Horn, B.L.; Henning Winter, H. Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles. Appl. Opt. 2001, 40, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, D.; Winter, H.; Lillya, C.; Stein, R.S. Conoscopic observations of shear-induced rotations in nematic liquid crystals. Rheol. Acta 1999, 38, 503–513. [Google Scholar] [CrossRef]
- Ishii, M.; Harada, K.; Kobayashi, M.; Usuki, Y.; Yazawa, T. Mechanical properties of PWO. Nucl. Instrum. Methods Phys. Res. A 1996, 376, 203–207. [Google Scholar] [CrossRef]
- Mengucci, P.; DiCristoforo, A.; Lebeau, M.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D. Surface quality inspection of PbWO4 crystals by grazing incidence X-ray diffraction. Nucl. Instrum. Methods Phys. Res. A 2005, 537, 207–210. [Google Scholar] [CrossRef]
- Baccaro, S.; Barone, L.M.; Borgia, B.; Castelli, F.; Cavallari, F.; Dafinei, I.; de Notaristefani, F.; Diemoz, M.; Festinesi, A.; Leonardi, E.; et al. Ordinary and extraordinary complex refractive index of the lead tungstate (PbWO4) crystal. Nucl. Instrum. Methods Phys. Res. A 1997, 385, 209–214. [Google Scholar] [CrossRef]
- Demyanyshyn, N.M.; Mytsyk, B.G.; Andrushchak, A.S.; Kityk, A.V. Photoelasticity of crystals with the scheelite structure: Quantum mechanical calculations. Acta Cryst. B 2025, 81, 47–54. [Google Scholar] [CrossRef]
- Daví, F. Some approximate relations in the photoelasticity of strongly-anisotropic crystals. Math. Methods Appl. Sci. 2020, 43, 9692–9705. [Google Scholar] [CrossRef]
- Stewart, G.W. Matrix Algorithms: Volume 1, Basic Decompositions; SIAM: Philadelphia, PA, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalto, L.; Rinaldi, D.; Davì, F. Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study. Crystals 2025, 15, 773. https://doi.org/10.3390/cryst15090773
Montalto L, Rinaldi D, Davì F. Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study. Crystals. 2025; 15(9):773. https://doi.org/10.3390/cryst15090773
Chicago/Turabian StyleMontalto, Luigi, Daniele Rinaldi, and Fabrizio Davì. 2025. "Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study" Crystals 15, no. 9: 773. https://doi.org/10.3390/cryst15090773
APA StyleMontalto, L., Rinaldi, D., & Davì, F. (2025). Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study. Crystals, 15(9), 773. https://doi.org/10.3390/cryst15090773