Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET
Abstract
1. Introduction
2. Device Structure and Simulation Description
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Trivedi, M.; Shenai, K. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 1999, 85, 6889–6897. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, J.; Wu, S.; Jia, L.; Yang, X.; Liu, Y.; Zhang, Y.; Sun, Q. A review on the GaN-on-Si power electronic devices. Fundam. Res. 2022, 2, 462–475. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.I.V.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Ghosh, K.; Singisetti, U. Impact ionization in β-Ga2O3. J. Appl. Phys. 2018, 124, 085707. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Jessen, G.H. Guest Editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Pearton, S.J. Perspective—Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356–P359. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017, 110, 103506. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, L.; Tang, X.; Hu, J.; Sun, J.; Zhang, Y.; Zhang, Y.; Jia, R. Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs. IEEE Trans. Power Electron. 2020, 35, 5157–5179. [Google Scholar] [CrossRef]
- Wong, M.H.; Higashiwaki, M. Vertical β-Ga2O3 Power Transistors: A Review. IEEE Trans. Electron Devices 2020, 67, 3925–3937. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates. IEEE Electron Device Lett. 2013, 34, 493–495. [Google Scholar] [CrossRef]
- Hidouri, T.; Parisini, A.; Dadgostar, S.; Jimenez, J.; Fornari, R. Point defect localization and cathodoluminescence emission in undoped ε-Ga2O3. J. Phys. D Appl. Phys. 2022, 55, 295103. [Google Scholar] [CrossRef]
- Lin, C.H.; Yuda, Y.; Wong, M.H.; Sato, M.; Takekawa, N.; Konishi, K.; Watahiki, T.; Yamamuka, M.; Murakami, H.; Kumagai, Y.; et al. Vertical Ga2O3 Schottky Barrier Diodes With Guard Ring Formed by Nitrogen-Ion Implantation. IEEE Electron Device Lett. 2019, 40, 1487–1490. [Google Scholar] [CrossRef]
- Lv, Y.; Mo, J.; Song, X.; He, Z.; Wang, Y.; Tan, X.; Zhou, X.; Gu, G.; Guo, H.; Feng, Z. Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs. Superlattices Microstruct. 2018, 117, 132–136. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, M.; Spencer, J.; Qin, Y.; Sasaki, K.; Tadjer, M.J.; Zhang, Y. 2.5 kV Vertical Ga2O3 Schottky Rectifier With Graded Junction Termination Extension. IEEE Electron Device Lett. 2023, 44, 221–224. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef]
- Abhi, S.H.; Islam, M.S.; Rahman, M.H.; Nahid, M.R.; Rabbane, G.; Mahin, M.S.S. Analytical Model of β-Ga2O3 MESFET for Transconductance Optimization. In Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Roy, S.; Ranga, P.; Shoemaker, D.; Song, Y.; Lundh, J.S.; Choi, S.; Krishnamoorthy, S. 130 mA mm−1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts. Appl. Phys. Express 2021, 14, 076502. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Hess, H. Design of Enhancement Mode β-Ga2O3 Vertical Current Aperture MOSFETs With a Trench Gate. IEEE Access 2024, 12, 42791–42801. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, Z.; Wang, C.; Cai, X.; Yu, J.; Kang, L.; Wu, Y.; Xu, J.; Si, M. Gallium oxide/indium gallium zinc oxide heterojunction Schottky barrier thin-film transistors with ultrahigh 2D electron density over 6 × 1013/cm2. J. Vac. Sci. Technol. A 2025, 43, 043409. [Google Scholar] [CrossRef]
- Zeman, C.J.; Kielar, S.M.; Jones, L.O.; Mosquera, M.A.; Schatz, G.C. Investigation of p-type doping in β- and κ-Ga2O3. J. Alloys Compd. 2021, 877, 160227. [Google Scholar] [CrossRef]
- Lenyk, C.A.; Gustafson, T.D.; Basun, S.A.; Halliburton, L.E.; Giles, N.C. Experimental determination of the (0/−) level for Mg acceptors in β-Ga2O3 crystals. Appl. Phys. Lett. 2020, 116, 142101. [Google Scholar] [CrossRef]
- Boulahia, N.; Filali, W.; Hocine, D.; Oussalah, S.; Sengouga, N. Electrical and optical performances investigation of planar solar blind photodetector based on IZTO/Ga2O3 Schottky diode via TCAD simulation. Opt. Quantum Electron. 2024, 56, 549. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Fang, C.; Hu, H.; Liu, Y.; Luo, Z.; Hao, Y.; Han, G. Investigation of β-Ga2O3 MOSFET With Double Drift Layers by TCAD Simulation. IEEE Trans. Electron Devices 2024, 71, 496–501. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, H.; Meng, C.; Yu, X.; Sun, X.; Zhang, C.; Ji, X.; Ren, F.; Gu, S.; Zheng, Y.; et al. Majority and Minority Carrier Traps in NiO/β-Ga2O3 p+-n Heterojunction Diode. IEEE Trans. Electron Devices 2022, 69, 981–987. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Wong, M.H.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 MOSFETs. In Proceedings of the 71st Device Research Conference, Notre Dame, IN, USA, 23–26 June 2013; Supplement. pp. 1–2. [Google Scholar] [CrossRef]
- Zhou, H.; Zeng, S.; Zhang, J.; Liu, Z.; Feng, Q.; Xu, S.; Zhang, J.; Hao, Y. Comprehensive Study and Optimization of Implementing p-NiO in β-Ga2O3 Based Diodes via TCAD Simulation. Crystals 2021, 11, 1186. [Google Scholar] [CrossRef]
- Cheng, M.; Luan, S.; Wang, H.; Jia, R. Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor. Chin. Phys. B 2023, 32, 37302. [Google Scholar] [CrossRef]
- Guo, L.; Luan, S.; Zhang, H.; Yuan, L.; Zhang, Y.; Jia, R. Analytical Model and Structure of the Multilayer Enhancement-Mode β-Ga2O3 Planar MOSFETs. IEEE Trans. Electron Devices 2022, 69, 682–689. [Google Scholar] [CrossRef]
- Ghosh, K.; Singisetti, U. Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 2017, 122, 035702. [Google Scholar] [CrossRef]
- Ghosh, K.; Singisetti, U. Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 2016, 109, 072102. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Song, X.; Wang, Y.; Liang, S.; He, Z.; Han, T.; Tan, X.; Feng, Z.; et al. Source-Field-Plated β -Ga2O3 MOSFET With Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett. 2019, 40, 83–86. [Google Scholar] [CrossRef]
- Yi, B.; Xu, Y.; Xia, J.; Zhu, S.; Qian, L.; Cheng, J.; Huang, H.; Yang, H. Simulation of a 3.5 kV 4H-SiC/Ga2O3 E-mode MISFET With Integrated Reverse-Conducting Heterojunction and Hetero-Channel Diode. IEEE Electron Device Lett. 2024, 45, 2303–2306. [Google Scholar] [CrossRef]
- Wang, Y.; Han, G.; Xu, W.; You, T.; Hu, H.; Liu, Y.; Zhang, X.; Huang, H.; Ou, X.; Ma, X.; et al. Recessed-Gate Ga2O3-on-SiC MOSFETs Demonstrating a Stable Power Figure of Merit of 100 mW/cm2 Up to 200 °C. IEEE Trans. Electron Devices 2022, 69, 1945–1949. [Google Scholar] [CrossRef]
- Sharma, S.; Meng, L.; Bhuiyan, A.F.M.A.U.; Feng, Z.; Eason, D.; Zhao, H.; Singisetti, U. Vacuum Annealed β-Ga2O3 Recess Channel MOSFETs With 8.56 kV Breakdown Voltage. IEEE Electron Device Lett. 2022, 43, 2029–2032. [Google Scholar] [CrossRef]
- Lei, W.; Dang, K.; Zhou, H.; Zhang, J.; Wang, C.; Xin, Q.; Alghamdi, S.; Liu, Z.; Feng, Q.; Sun, R.; et al. Proposal and Simulation of Ga2O3 MOSFET With PN Heterojunction Structure for High-Performance E-Mode Operation. IEEE Trans. Electron Devices 2022, 69, 3617–3622. [Google Scholar] [CrossRef]
- Gao, M.; Huang, H.; Yin, L.; Lu, X.; Zhang, J.; Ren, K. A Novel Field-Plated Lateral β-Ga2O3 MOSFET Featuring Self-Aligned Vertical Gate Structure. IEEE Trans. Electron Devices 2023, 70, 4309–4314. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Band gap, Eg/eV | 4.8 |
Electron mobility, μ (cm2·V−1·s−1) | 300 |
Dielectric constant, κs | 10.2 |
Electron affinity/eV, χ | 4.0 |
Valence band state density/cm−3, NC | 3.72 × 1018 |
Conduction band state density/cm−3, Nv | 3.72 × 1018 |
Effective electronic mass, m0 | 0.28 |
Breakdown field strength/(MV·cm−1), Ec | 8 |
Parameter | Value |
---|---|
Band gap, Eg/eV | 3.68 |
Hole mobility, μ (cm2·V−1·s−1) | 0.5 |
Dielectric constant, κs | 11.8 |
Electron affinity/eV, χ | 1.8 |
Effective hole mass, m0 | 6 |
Breakdown field strength/(MV·cm−1), Ec | 4.8–6.2 |
Parameter | Value |
---|---|
AN1/cm−1 | 2.5 × 108 |
AN2/cm−1 | 2.5 × 108 |
BN1/(V·cm−1) | 2.26 × 107 |
BN2/(V∙cm−1) | 2.26 × 107 |
AP1/cm−1 | 2.23 × 108 |
AP2/cm−1 | 2.23 × 108 |
BP1/(V·cm−1) | 2.7 × 108 |
BP2/(V·cm−1) | 2.7 × 108 |
βTAN | 1 |
βTAP | 1 |
Device | MODE | VTH | BV (V) | Ron,sp (mΩ·cm2) | PFOM (MW/cm2) | Ref. |
---|---|---|---|---|---|---|
β-Ga2O3/NiO HJFET | E-MODE | 2.14 | 2650 | 2.48 | 2650 | This work |
DDLs β-Ga2O3 MOSFET | - | - | 2310 | 11.7 | 582.0 | 25 |
β-Ga2O3/4H-SiC HC-MISFET | E-MODE | 3.5 | 3580 | 7 | 183 | 33 |
β-Ga2O3/4H-SiC HJFET | E-MODE | 0.82 | 1817 | - | 180 | 34 |
Ga2O3-on-SiC MOSFETs | D-MODE | - | 1000 | 100 | 100 | 35 |
β-Ga2O3 Recess Channel MOSFETs | D-MODE | −20 | 8560 | 897 k | - | 36 |
β-Ga2O3/NiO HJFET | E-MODE | 1.5 | 5500 | 14.75 | 2050 | 37 |
FP β-Ga2O3 MOSFET | E-MODE | 0.65 | 2443 | - | - | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Li, Z.; Li, F.; Qiu, H.; Li, T.; Lei, C.; Liang, T. Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET. Crystals 2025, 15, 771. https://doi.org/10.3390/cryst15090771
Yu J, Li Z, Li F, Qiu H, Li T, Lei C, Liang T. Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET. Crystals. 2025; 15(9):771. https://doi.org/10.3390/cryst15090771
Chicago/Turabian StyleYu, Jiangang, Ziwei Li, Fengchao Li, Haibing Qiu, Tengteng Li, Cheng Lei, and Ting Liang. 2025. "Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET" Crystals 15, no. 9: 771. https://doi.org/10.3390/cryst15090771
APA StyleYu, J., Li, Z., Li, F., Qiu, H., Li, T., Lei, C., & Liang, T. (2025). Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET. Crystals, 15(9), 771. https://doi.org/10.3390/cryst15090771