Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ORs | Orientation relationships |
VLS | Vapor–liquid–solid growth |
TEM | Transmission electron microscopy |
BF | Bright-field |
SAED | Selected area electron diffraction |
CBED | Convergent-beam electron diffraction |
HRTEM | High-resolution transmission electron microscopy |
XRD | X-ray diffraction |
References
- Panayotov, D.A.; Morris, J.R. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surf. Sci. Rep. 2016, 71, 77–271. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Murdoch, M.; Waterhouse, G.I.N.; Nadeem, M.A.; Metson, J.B.; Keane, M.A.; Howe, R.F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science 2007, 318, 1757–1760. [Google Scholar] [CrossRef]
- Chen, M.S.; Goodman, D.W. The Structure of Catalytically Active Gold on Titania. Science 2004, 306, 252–255. [Google Scholar] [CrossRef]
- Whittaker, T.; Kumar, K.B.S.; Peterson, C.; Pollock, M.N.; Grabow, L.C.; Chandler, B.D. H2 Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H2 Activation at the Metal–Support Interface. J. Am. Chem. Soc. 2018, 140, 16469–16487. [Google Scholar] [CrossRef]
- Suchorski, Y.; Kozlov, S.M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K.M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522. [Google Scholar] [CrossRef]
- Saavedra, J.; Doan, H.A.; Pursell, C.J.; Grabow, L.C.; Chandler, B.D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, B.; Fang, K.; Li, X.-Y.; Hansen, T.W.; Ou, Y.; Yang, H.; Wagner, J.B.; Gao, Y.; Wang, Y.; et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521. [Google Scholar] [CrossRef]
- Tang, H.; Su, Y.; Zhang, B.; Lee, A.F.; Isaacs, M.A.; Wilson, K.; Li, L.; Ren, Y.; Huang, J.; Haruta, M.; et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D.S.; Xiao, F.-S. Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983. [Google Scholar] [CrossRef]
- Munasinghe Arachchige, H.M.M.; Zappa, D.; Poli, N.; Gunawardhana, N.; Attanayake, N.H.; Comini, E. Seed-Assisted Growth of TiO2 Nanowires by Thermal Oxidation for Chemical Gas Sensing. Nanomaterials 2020, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.Y.; Lin, M.; Zhou, W.; Wang, J.; Zhu, G. Kinetically Favorable Vapor–Adsorbate–Solid Growth of Rutile Nanowires. Small Methods 2019, 3, 1900111. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lee, J.-S. Morphology Control of Single Crystalline Rutile TiO2 Nanowires. Bull. Korean Chem. Soc. 2011, 32, 3571–3574. [Google Scholar] [CrossRef]
- Ha, J.-Y.; Sosnowchik, B.D.; Lin, L.; Kang, D.H.; Davydov, A.V. Patterned Growth of TiO2 Nanowires on Titanium Substrates. Appl. Phys. Express 2011, 4, 065002. [Google Scholar] [CrossRef]
- Lee, J.-C.; Park, K.-S.; Kim, T.-G.; Choi, H.-J.; Sung, Y.-M. Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology 2006, 17, 4317–4321. [Google Scholar] [CrossRef]
- Zhuge, F.; Yanagida, T.; Nagashima, K.; Yoshida, H.; Kanai, M.; Xu, B.; Klamchuen, A.; Meng, G.; He, Y.; Rahong, S.; et al. Fundamental Strategy for Creating VLS Grown TiO2 Single Crystalline Nanowires. J. Phys. Chem. C 2012, 116, 24367–24372. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Sheng, X.; He, D.; Yang, J.; Zhu, K.; Feng, X. Oriented Assembled TiO2 Hierarchical Nanowire Arrays with Fast Electron Transport Properties. Nano Lett. 2014, 14, 1848–1852. [Google Scholar] [CrossRef]
- Liu, C.; Tang, J.; Chen, H.M.; Liu, B.; Yang, P. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting. Nano Lett. 2013, 13, 2989–2992. [Google Scholar] [CrossRef]
- Cosandey, F. Epitaxy, interfacial energy and atomic structure of Au/TiO2 interfaces. Philos. Mag. 2013, 93, 1197–1218. [Google Scholar] [CrossRef]
- Shibata, N.; Goto, A.; Matsunaga, K.; Mizoguchi, T.; Findlay, S.D.; Yamamoto, T.; Ikuhara, Y. Interface Structures of Gold Nanoparticles on TiO2(110). Phys. Rev. Lett. 2009, 102, 136105. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, S.; Wen, J.; Scarpelli, M.E.; Pierce, B.J.; Zuo, J.-M. Equilibrium shapes and triple line energy of epitaxial gold nanocrystals supported on TiO2(110). Phys. Rev. B 2010, 82, 195421. [Google Scholar] [CrossRef]
- Ichikawa, S.; Akita, T.; Okumura, M.; Haruta, M.; Tanaka, K.; Kohyama, M. Electron holographic 3-D nano-analysis of Au/TiO2 catalyst at interface. J. Electron Microsc. 2003, 52, 21–26. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, Y.; Shutthanandan, V.; Thevuthasan, S.; Duscher, G. Microstructure of precipitated Au nanoclusters in TiO2. J. Appl. Phys. 2004, 95, 8185–8193. [Google Scholar] [CrossRef]
- Lin, M.; Zhou, W.; Gu, X.; Zhu, G.-Z. Gold-rutile interfaces with irrational crystallographic orientations. Mater. Charact. 2021, 176, 111116. [Google Scholar] [CrossRef]
- Akita, T.; Tanaka, K.; Kohyama, M.; Haruta, M. HAADF-STEM observation of Au nanoparticles on TiO2. Surf. Interface Anal. 2008, 40, 1760–1763. [Google Scholar] [CrossRef]
- Yu, M.; Trinkle, D.R. Au/TiO2(110) Interfacial Reconstruction Stability from ab Initio. J. Phys. Chem. C 2011, 115, 17799–17805. [Google Scholar] [CrossRef]
- Zhu, G.-Z.; Lin, M.-H.; Liu, F.; Xie, D.Y.; Yao, S.-Y.; Yi, A. Reconstructions in Atomic and Electronic Structures at Gold-Oxide Interfaces. Microsc. Microanal. 2019, 25, 2206–2207. [Google Scholar] [CrossRef]
- Razaghi, Z.; Xie, D.Y.; Lin, M.-H.; Zhu, G.-Z. Ion beam-induced bending of TiO2 nanowires with bead-like and prismatic shapes. RSC Adv. 2022, 12, 5577–5586. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Liu, Y.; Zhu, G.-Z. Sawtooth Faceting in Rutile Nanowires. ACS Omega 2022, 7, 10406–10412. [Google Scholar] [CrossRef]
- Yao, S.; Wen, M.; Zhu, G.-Z. Bimodal size distribution of dewetted gold nanoparticles with regrown oxide bases. Appl. Surf. Sci. 2020, 501, 144227. [Google Scholar] [CrossRef]
- Kodambaka, S.; Tersoff, J.; Reuter, M.C.; Ross, F.M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Refinement of nucleation theory for vapor–liquid–solid nanowires. Cryst. Growth Des. 2017, 17, 2589–2593. [Google Scholar] [CrossRef]
- Mohammadi, M.K.; Hayati, P.; Jafari, S.; Karimi, M.; Gutierrez, A. Sonication-assisted synthesis of a new rod-like metal-organic coordination polymer compound; novel precursor to produce pure phase nano-sized lead(II) oxide. J. Mol. Struct. 2019, 1176, 434–446. [Google Scholar] [CrossRef]
- Hayati, P.; Gutierrez, A. The role of non-covalent interactions on supramolecular assembly of coordination compounds of mercury(II) based on substituted pyridine mixed ligands. A survey of different conditions on morphology of new flower and ribbon like submicro structures. Inorganica Chim. Acta 2018, 479, 83–96. [Google Scholar] [CrossRef]
- Wacaser, B.A.; Dick, K.A.; Johansson, J.; Borgström, M.T.; Deppert, K.; Samuelson, L. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. Adv. Mater. 2009, 21, 153–165. [Google Scholar] [CrossRef]
- Lopez, N.; Nørskov, J.K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262–11263. [Google Scholar] [CrossRef]
The Orientation Relationships (ORs) | No. | Rotation | Type |
---|---|---|---|
9 | ORa | ||
4 | ORa | ||
3 | ORa | ||
1 | ORa | ||
1 | ORe2 | ||
1 | ~ORe2 | ||
1 | ORe2 | ||
1 | ORg2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuamr, A.M.; Lin, M.; Liu, Y.; Zhu, G. Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires. Crystals 2025, 15, 766. https://doi.org/10.3390/cryst15090766
Abuamr AM, Lin M, Liu Y, Zhu G. Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires. Crystals. 2025; 15(9):766. https://doi.org/10.3390/cryst15090766
Chicago/Turabian StyleAbuamr, Adel M., Minghui Lin, Yushun Liu, and Guozhen Zhu. 2025. "Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires" Crystals 15, no. 9: 766. https://doi.org/10.3390/cryst15090766
APA StyleAbuamr, A. M., Lin, M., Liu, Y., & Zhu, G. (2025). Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires. Crystals, 15(9), 766. https://doi.org/10.3390/cryst15090766