Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- -
- X-ray diffraction (XRD) analysis revealed the presence of several phases, including Zr2CN, ZrC, ZrN, ZrO2, and Fe3O4. The formation of carbide and nitride phases is attributed to the thermal decomposition of ZrCN powder, while the presence of ZrO2 phases is explained by oxidation during the spraying process;
- -
- Tribological tests showed that the coefficient of friction of the coatings ranged from 0.2 to 0.93, depending on the spraying parameters and air flow rate. The lowest coefficient of friction (~0.2) was recorded for coatings applied at a pressure of 0.38 MPa, which is associated with the formation of an amorphous lubricating CNx phase that significantly reduces friction and wear;
- -
- Wear track analysis confirmed an abrasive wear mechanism, with wear track widths varying from 329 to 759 µm. The coatings provided effective substrate protection with minimal wear, even under high loads;
- -
- It was established that the microhardness of the coatings varied between 1512 HV and 1857 HV, depending on the deposition conditions. The initial microhardness of U8G steel is 392.5 HV, indicating a 4–4.5-fold increase after coating. The highest microhardness value (1857 HV) was observed for sample 5, indicating optimal particle densification and minimal coating porosity;
- -
- Adhesion tests performed by the pull-off method according to ASTM D4541-22 showed that the adhesion strength varied from 4.24 MPa to 14.56 MPa, depending on the air pressure during deposition. The highest value (14.56 MPa) was recorded for the sample deposited at 0.38 MPa, indicating optimal conditions for the formation of a cohesive and well-bonded coating structure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.-H.; Kuo, K.-L.; Yu, G.-P. Oxidation behavior and corrosion resistance of vacuum annealed ZrN-coated stainless steel. Surf. Coat. Technol. 2019, 358, 308–319. [Google Scholar] [CrossRef]
- Garcia, J.; Moreno, M.F.; Östby, J.; Persson, J.; Pinto, H.C. Design of coated cemented carbides with improved comb crack resistance. In Proceedings of the 19th Plansee Semin, Reutte, Austria, 29 May–2 June 2017. [Google Scholar]
- Shishkin, R.A.; Kudyakova, V.S.; Zhirenkina, N.V. Issledovanie fiziko-khimicheskikh preobrazovanii v protsesse nizkotemperaturnogo sinteza karbida tsirkoniya. Novye Ogneupory 2019, 2, 45–48. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Zhou, Z.; Li, L.K.-Y.; Yan, J. Electrochemical performance of TiCN coatings with low carbon concentration in simulated body fluid. Surf. Coat. Technol. 2014, 253, 199–204. [Google Scholar] [CrossRef]
- Gilewicz, A.; Chmielewska, P.; Murzynski, D.; Dobruchowska, E.; Warcholinski, B. Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer’s and Hank’s solutions. Surf. Coat. Technol. 2016, 299, 7–14. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Ding, M.; Zheng, H.; Zhang, H.; Zhang, B.; Li, X.; Wu, G. Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings. Appl. Surf. Sci. 2015, 340, 113–119. [Google Scholar] [CrossRef]
- Xie, Z.-H.; Shan, S. Nanocontainers-enhanced self-healing Ni coating for corrosion protection of Mg alloy. J. Mater. Sci. 2018, 53, 3744–3755. [Google Scholar] [CrossRef]
- Silva, E.; de Figueriredo, M.R.; Franz, R.; Galindo, R.E.; Palacio, C.; Espinosa, A.; Calderon, V.S.; Mitterer, C.; Carvalho, S. Structure–property relations in ZrCN coatings for tribological applications. Surf. Coat. Technol. 2010, 205, 2134–2141. [Google Scholar] [CrossRef]
- Larijani, M.M.; Zanjanbar, M.B.; Majdabadi, A. The effect of carbon fraction in Zr(C,N) films on the nano-structure properties and hardness. J. Alloys Compd. 2010, 492, 735–738. [Google Scholar] [CrossRef]
- Cotrut, C.M.; Braic, V.; Balaceanu, M.; Titorencu, I.; Braic, M.; Parau, A.C. Corrosion resistance, mechanical properties and biocompatibility of Hf-containing ZrCN coatings. Thin Solid Films 2013, 538, 48–55. [Google Scholar] [CrossRef]
- Kengesbekov, A.; Rakhadilov, B.; Sagdoldina, Z.; Buitkenov, D.; Dosymov, Y.; Kylyshkanov, M. Improving the Efficiency of Air Plasma Spraying of Titanium Nitride Powder. Coatings 2022, 12, 1644. [Google Scholar] [CrossRef]
- Druzhnova, Y. Development of methods of gas-thermal spraying of hardening coatings based on tungsten and chromium carbides (review). Proc. VIAM 2022, 10, 100–115. (In Russian) [Google Scholar]
- Rakhadilov, B.; Buitkenov, D.; Sagdoldina, Z.; Idrisheva, Z.; Zhamanbayeva, M.; Kakimzhanov, D. Preparation and characterization of NiCr/NiCr-Al2O3/Al2O3 multilayer gradient coatings by gas detonation spraying. Coatings 2021, 11, 1524. [Google Scholar] [CrossRef]
- Kantay, N.; Rakhadilov, B.; Kurbanbekov, S.; Yeskermessov, D.; Yerbolatova, G.; Apsezhanova, A. Influence of detonation-spraying parameters on the phase composition and tribological properties of Al2O3 coatings. Coatings 2021, 11, 793. [Google Scholar] [CrossRef]
- Abd Malek, M.; Saad, N.; Abas, S.; Shah, N. Thermal arc spray overview. IOP Conf. Ser. Mater. Sci. Eng. 2013, 46, 012028. [Google Scholar] [CrossRef]
- Skakov, M.; Ocheredko, I.; Tuyakbayev, B.; Bayandinova, M.; Nurizinova, M. Development and studying of the technology for thermal spraying of coatings made from ultra-high-molecular-weight polyethylene. Coatings 2023, 13, 698. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Satbayeva, Z.; Ramankulov, S.; Shektibayev, N.; Zhurerova, L.; Popova, N.; Sagdoldina, Z. Change of 0.34Cr-1Ni-Mo-Fe Steel Dislocation Structure in Plasma Electrolyte Hardening. Materials 2021, 14, 1928. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wu, Y.; Hong, S.; Cheng, J.; Wei, Z. Influence of the high-velocity oxygen-fuel spray parameters on the porosity and corrosion resistance of iron-based amorphous coatings. Surf. Coat. Technol. 2019, 366, 296–302. [Google Scholar] [CrossRef]
- Picas, J.A.; Punset, M.; Baile, M.T.; Martín, E.; Forn, A. Effect of Oxygen/Fuel Ratio on the in-Flight Particle Parameters and Properties of HVOF WC-CoCr Coatings. Surf. Coat. Technol. 2011, 205, S364–S368. [Google Scholar] [CrossRef]
- Kurbanbekov, S.; Rakhadilov, B.; Kakimzhanov, D.; Seitov, B.; Katpaeva, K.; Kurmantayev, A.; Dautbekov, M.; Kengesbekov, A. Research on the Structural–Phase and Physical–Mechanical Characteristics of the Cr3C2-NiCr Composite Coating Deposited by the HVOF Method on E110 Zirconium Alloy. Coatings 2024, 14, 1030. [Google Scholar] [CrossRef]
- Mardali, M.; SalimiJazi, H.R.; Karimzadeh, F.; Luthringer, B.; Blawert, C.; Labbaf, S. Comparative Study on Microstructure and Corrosion Behavior of Nanostructured Hydroxyapatite Coatings Deposited by High Velocity Oxygen Fuel and Flame Spraying on AZ61 Magnesium-Based Substrates. Appl. Surf. Sci. 2019, 465, 614–624. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Li, S.; Han, X.; Jiang, H. Mechanism Study on the Influence of Combustion Models and Spray Gun Geometric Parameters on High-Velocity Oxygen-Fuel (HVOF) Thermal Spraying. J. Manuf. Process. 2023, 98, 173–185. [Google Scholar] [CrossRef]
- Qiao, L.; Zhou, B.; Li, R.; Li, T.; Zhao, Y.; Zhang, X.; Lee, C.-H. Effects of Sliding Speed on Wear Behavior of High-Velocity Oxygen Fuel-Sprayed FeCrMoNiCuBSiC Metallic Glass Coatings. Lubricants 2025, 13, 10. [Google Scholar] [CrossRef]
- Cinca, N.; Lima, C.R.C.; Guilemany, J.M. An Overview of Intermetallics Research and Application: Status of Thermal Spray Coatings. J. Mater. Res. Technol. 2013, 21, 75–86. [Google Scholar] [CrossRef]
- Sun, B.; Fukanuma, H.; Ohno, N. Study on Stainless Steel 316L Coatings Sprayed by a Novel High Pressure HVOF. Surf. Coat. Technol. 2015, 239, 58–64. [Google Scholar] [CrossRef]
- Harrison, R. Processing and Characterisation of ZrCxNy Ceramics as a Function of Stoichiometry via Carbothermic Reduction-Nitridation. Doctoral Dissertation, Imperial College London, London, UK, 2015. [Google Scholar]
- Murray, C. ASTM G99 Tip’s Perspective Continuous Wear Contact. In Today’s Standard for Tomorrow’s Materials; NANOVEA: Irvine, CA, USA, 2013; Volume 9. [Google Scholar]
- Galindo, S.C.V.R.E.; Benito, N.; Palacio, C.; Cavaleiro, A.; Carvalho, S. Ag+ Release Inhibition from ZrCN–Ag Coatings by Surface Agglomeration Mechanism: Structural Characterization. J. Phys. D Appl. Phys. 2013, 46, 325303. [Google Scholar] [CrossRef]
- Ul-Hamid, A. Microstructure, Properties and Applications of Zr-Carbide, Zr-Nitride and Zr-Carbonitride Coatings: A Review. Mater. Adv. 2020, 1, 1012–1037. [Google Scholar] [CrossRef]
- Manninen, N.K.; Galindo, R.E.; Benito, N.; Figueiredo, N.M.; Cavaleiro, A.; Palacio, C.; Carvalho, S. Ag–Ti(C,N)-Based Coatings for Biomedical Applications: Influence of Silver Content on the Structural Properties. J. Phys. D Appl. Phys. 2011, 44, 375501. [Google Scholar] [CrossRef]
- Krutskii, Y.L.; Gudyma, T.S.; Krutskaya, T.M.; Semenov, A.O.; Utkin, A.V. Carbides of Some Transition Metals: Properties, Applications, and Methods of Production. Part 2. Chromium and Zirconium Carbides. Izv. Ferr. Metall. 2023, 66, 445–458. [Google Scholar] [CrossRef]
- Vaz, F.; Carvalho, P.; Cunha, L.; Rebouta, L.; Moura, C.; Alves, E.; Ramos, A.R.; Cavaleiro, A.; Goudeau, P.; Rivière, J.P. Property Change in ZrNxOy Thin Films: Effect of the Oxygen Fraction and Bias Voltage. Thin Solid Films 2004, 469, 11–17. [Google Scholar] [CrossRef]
- Aristova, N.M.; Onufriev, S.V.; Savvatimskiy, A.I. Thermodynamic Properties of Zirconium Nitride in the Condensed State. Uspekhi Fiz. Nauk. 2024, 194, 1082–1094. [Google Scholar] [CrossRef]
- Králik, B.; Chang, E.K.; Louie, S.G. Quasiparticle Band Structure of ZrN. Phys. Rev. B 1998, 57, 7027. [Google Scholar] [CrossRef]
- Kim, D.J. Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2. J. Am. Ceram. Soc. 1990, 73, 115–120. [Google Scholar] [CrossRef]
- Smilgies, D.M. Scherrer Grain-Size Analysis Adapted to Grazing-Incidence Scattering with Area Detectors. J. Appl. Crystallogr. 2009, 42, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Kumari, A.; Hostaša, J.; Yadav, P.C.; Pandey, C.; Gupta, A.; Sharma, S.K. Dry Sliding Behavior of Transparent Yttrium Aluminum Garnet against 100Cr6 Steel Balls. Int. J. Appl. Ceram. Technol. 2024, 22, e14926. [Google Scholar] [CrossRef]
- Baroni, E.; Fortini, A.; Meo, L.; Soffritti, C.; Merlin, M.; Garagnani, G.L. Ball-on-Disk Wear Maps for Bearing Steel-Hard Anodized EN AW-6082 Aluminum Alloy Tribocouple in Dry Sliding Conditions. Coatings 2024, 14, 1469. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Martínez-Martínez, D.; López-Cartes, C.; Fernández, A. Structure and Tribological Performance of Metal-Containing Amorphous Carbon Coatings for Microcomponents. Surf. Coat. Technol. 2011, 205, 4011–4016. [Google Scholar] [CrossRef]
- Quiros, C.; Nunez, R.; Prieto, P.; Elizalde, E.; Fernandez, A.; Schubert, C.; Donnet, C.; Sanz, J.M. Tribological and Chemical Characterization of Ion Beam-Deposited CNx Films. Vacuum 1999, 52, 199–202. [Google Scholar] [CrossRef]
- Kanda, S.; Tokoroyama, T.; Umehara, N.; Fuwa, Y. In Situ Analysis of the Tribochemical Reaction of CNx by FTIR. Tribol. Online 2008, 3, 100–104. [Google Scholar] [CrossRef]
C | Si | Mn | Ni | S | P | Cr | Cu |
---|---|---|---|---|---|---|---|
0.8–0.9 | 0.17–0.33 | 0.33–0.58 | max 0.25 | max 0.028 | max 0.03 | max 0.2 | max 0.25 |
No. | Sample a | Sample b | Sample c | Sample d | Sample e |
---|---|---|---|---|---|
Air, (MPa) | 0.24 | 0.26 | 0.28 | 0.3 | 0.38 |
Fuel gas, (propane) (MPa) | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Oxygen, (MPa) | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
Thickness (μm) | 7.0 ± 0.4 | 3.0 ± 0.2 | 11.7 ± 0.25 | 12.3 ± 0.25 | 12.5 ± 0.4 |
deposition efficiency (%) | 37.7 ± 1.62 | 16.2 ± 0.28 | 63.0 ± 0.37 | 66.2 ± 0.29 | 67.3 ± 0.38 |
Phase | Sample a | Sample b | Sample c | Sample d | Sample e |
Zr2CN | 25.4% | 13.2% | 18.4% | 14.5% | 27.9% |
ZrN | 14.8% | 11.4% | 12.5% | 13.2% | 17.2% |
ZrC | 13.3% | 12.3% | 14.8% | 12.3% | 16.3% |
ZrO2 | 15.8% | 21.9% | 18.6% | 20.7% | 13.5% |
Fe3O4 | 30.7% | 41.2% | 35.7% | 39.3% | 25.1% |
Sample a (MPa) | Sample b (MPa) | Sample c (MPa) | Sample d (MPa) | Sample e (MPa) |
---|---|---|---|---|
9.770 ± 0.63 | 4.240 ± 0.42 | 5.410 ± 0.44 | 7.490 ± 0.54 | 14.56 ± 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbanbekov, S.; Suierkulova, Z.; Omashova, G.; Kaldar, B.; Temirbekov, A.; Kambarbekov, S.; Shektibayev, N.; Baltabayeva, D. Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying. Crystals 2025, 15, 762. https://doi.org/10.3390/cryst15090762
Kurbanbekov S, Suierkulova Z, Omashova G, Kaldar B, Temirbekov A, Kambarbekov S, Shektibayev N, Baltabayeva D. Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying. Crystals. 2025; 15(9):762. https://doi.org/10.3390/cryst15090762
Chicago/Turabian StyleKurbanbekov, Sherzod, Zhamila Suierkulova, Gaukhar Omashova, Berik Kaldar, Alisher Temirbekov, Sardor Kambarbekov, Nurdaulet Shektibayev, and Dilnoza Baltabayeva. 2025. "Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying" Crystals 15, no. 9: 762. https://doi.org/10.3390/cryst15090762
APA StyleKurbanbekov, S., Suierkulova, Z., Omashova, G., Kaldar, B., Temirbekov, A., Kambarbekov, S., Shektibayev, N., & Baltabayeva, D. (2025). Influence of Air Pressure on the Microstructure, Phase Composition, and Tribomechanical Performance of Thin ZrCN Coatings Deposited via HVOF Spraying. Crystals, 15(9), 762. https://doi.org/10.3390/cryst15090762