Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Strategies for Crack Suppression in LN Films
3.2. Effect of Lithium-Deficient Phase on Crack-Free LN Films
3.3. Electrical Properties of Crack-Free LN Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photon. Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef]
- Xie, H.; Yang, T.; Wei, Y.; Guan, H.; Lu, H. Recent Research Progress of Thin film Lithium Niobate Photodetector. J. Synth. Cryst. 2024, 53, 410–425. [Google Scholar] [CrossRef]
- Xu, X.; Wang, T.; Chen, P.; Zhou, C.; Ma, J.; Wei, D.; Wang, H.; Niu, B.; Fang, X.; Wu, D.; et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 2022, 609, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices. Adv. Mater. 2020, 32, 1806452. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sayem, A.A.; Fan, L.; Zou, C.L.; Wang, S.; Cheng, R.; Fu, W.; Yang, L.; Xu, M.; Tang, H.X. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 2021, 12, 4453. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Gao, R.; Guan, J.; Li, C.; Yao, N.; Cheng, Y. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices. J. Synth. Cryst. 2024, 53, 372–394. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, L.; Chen, F. Ion-cut lithium niobate on insulator technology: Recent advances and perspectives. Appl. Phys. Rev. 2021, 8, 011307. [Google Scholar] [CrossRef]
- Zhuang, R.; He, J.; Qi, Y.; Li, Y. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching. Adv. Mater. 2023, 35, 2208113. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Snigirev, V.; Riedhauser, A.; Lihachev, G.; Churaev, M.; Riemensberger, J.; Wang, R.N.; Siddharth, A.; Huang, G.; Möhl, C.; Popoff, Y.; et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 2023, 615, 411–417. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, X. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl. 2020, 9, 1. [Google Scholar] [CrossRef]
- Wan, L.; Yang, Z.; Zhou, W.; Wen, M.; Feng, T.; Zeng, S.; Liu, D.; Li, H.; Pan, J.; Zhu, N.; et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl. 2022, 11, 145. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, W.; Chen, Y.; Feng, H.; Zhang, Y.; Chen, Z.; Wang, C. A power-efficient integrated lithium niobate electro-optic comb generator. Commun. Phys. 2023, 6, 17. [Google Scholar] [CrossRef]
- Wang, C.; Langrock, C.; Marandi, A.; Jankowski, M.; Zhang, M.; Desiatov, B.; Fejer, M.M.; Lončar, M. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 2018, 5, 1438–1441. [Google Scholar] [CrossRef]
- Lu, J.; Surya, J.B.; Liu, X.; Bruch, A.W.; Gong, Z.; Xu, Y.; Tang, H.X. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 2019, 6, 1455–1460. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.Y.; Li, Z.; Tang, C.; Sua, Y.M.; Fan, H.; Huang, Y.P. Ultrabright Quantum Photon Sources on Chip. Phys. Rev. Lett. 2020, 125, 263602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, C.; Rüsing, M.; Mookherjea, S. High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides. Phys. Rev. Lett. 2020, 124, 163603. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Chen, K.; Wang, Z.; Fan, X.; Gan, R.; Qi, L.; Xie, Y.; Guo, C.; Yang, Z.; Cui, N.; et al. High-Performance Electro-Optic Modulator on Silicon Nitride Platform with Heterogeneous Integration of Lithium Niobate. Laser Photon. Rev. 2023, 17, 2200327. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Fang, Z.; Yu, S.; Huang, T.; Zhou, J.; Wu, R.; Liu, J.; Ma, Y.; Wang, Z.; et al. Monolithically Integrated Active Passive Waveguide Array Fabricated on Thin Film Lithium Niobate Using a Single Continuous Photolithography Process. Laser Photon. Rev. 2023, 17, 2200686. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Y.; Liu, Z.; Xue, D. State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules 2021, 26, 7044. [Google Scholar] [CrossRef]
- Ogugua, S.N.; Ntwaeaborwa, O.M.; Swart, H.C. Latest Development on Pulsed Laser Deposited Thin Films for Advanced Luminescence Applications. Coatings 2020, 10, 1078. [Google Scholar] [CrossRef]
- Paldi, R.L.; Qi, Z.; Misra, S.; Lu, J.; Sun, X.; Phuah, X.L.; Kalaswad, M.; Bischoff, J.; Branch, D.W.; Siddiqui, A.; et al. Nanocomposite-Seeded Epitaxial Growth of Single-Domain Lithium Niobate Thin Films for Surface Acoustic Wave Devices. Adv. Photon. Res. 2021, 2, 2000149. [Google Scholar] [CrossRef]
- Li, W.; Cui, J.; Wang, W.; Zheng, D.; Jia, L.; Saeed, S.; Liu, H.; Rupp, R.; Kong, Y.; Xu, J. P-Type Lithium Niobate Thin Films Fabricated by Nitrogen-Doping. Materials 2019, 12, 819. [Google Scholar] [CrossRef]
- Sauze, L.C.; Vaxelaire, N.; Templier, R.; Rouchon, D.; Pierre, F.; Guedj, C.; Remiens, D.; Rodriguez, G.; Bousquet, M.; Dupont, F.; et al. Homo-epitaxial growth of LiNbO3 thin films by Pulsed Laser deposition. J. Cryst. Growth 2023, 601, 126950. [Google Scholar] [CrossRef]
- Fakhri, M.A.; Alwahib, A.A.; Alhasan, S.F.H.; Salim, E.T.; Ibrahim, R.K.; Alsultany, F.H.; Abdulwahab, A.W.; Hashim, U. Optoelectronic device based on lithium niobate nanofilms deposited at various pulsed laser wavelengths. J. Opt. 2023, 52, 2356–2365. [Google Scholar] [CrossRef]
- Bo, F.; Wang, J.; Cui, J.; Ozdemir, S.K.; Kong, Y.; Zhang, G.; Xu, J.; Yang, L. Lithium-Niobate–Silica Hybrid Whispering-Gallery-Mode Resonators. Adv. Mater. 2015, 27, 8075–8081. [Google Scholar] [CrossRef]
- Bartasyte, A.; Margueron, S.; Baron, T.; Oliveri, S.; Boulet, P. Toward High-Quality Epitaxial LiNbO3 and LiTaO3 Thin Films for Acoustic and Optical Applications. Adv. Mater. Interfaces 2017, 4, 1600998. [Google Scholar] [CrossRef]
- Tada, H.; Kumpel, A.E.; Lathrop, R.E.; Slanina, J.B.; Nieva, P.; Zavracky, P.; Miaoulis, I.N.; Wong, P.Y. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J. Appl. Phys. 2000, 87, 4189. [Google Scholar] [CrossRef]
- Wang, S.J.; Panhans, M.; Lashkov, I.; Kleemann, H.; Caglieris, F.; Becker-Koch, D.; Vahland, J.; Guo, E.; Huang, S.; Krupskaya, Y.; et al. Highly efficient modulation doping: A path toward superior organic thermoelectric devices. Sci. Adv. 2022, 8, eabl9264. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Y.C.; Cai, J.M.; Cao, K.; Lee, H.B.R. Atomic level deposition to extend Moore’s law and beyond. Int. J. Extrem. Manuf. 2020, 2, 022002. [Google Scholar] [CrossRef]
- Huang, Z.; Shao, G.; Li, L. Micro/nano functional devices fabricated by additive manufacturing. Prog. Mater. Sci 2023, 131, 101020. [Google Scholar] [CrossRef]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Murauskas, T.; Boulet, P.; Margueron, S.; Gleize, J.; Robert, S.; Kubilius, V.; Saltyte, Z. Residual stresses and clamped thermal expansion in LiNbO3 and LiTaO3 thin films. Appl. Phys. Lett. 2012, 101, 122902. [Google Scholar] [CrossRef]
- Warner, A.W.; Onoe, M.; Coquin, G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m). J. Acoust. Soc. Am. 1967, 42, 1223–1231. [Google Scholar] [CrossRef]
- Akazawa, H.; Shimada, M. Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films. J. Mater. Res. 2007, 22, 1726–1736. [Google Scholar] [CrossRef]
- Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K. Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges. Adv. Funct. Mater. 2016, 26, 7599–7604. [Google Scholar] [CrossRef]
- Xiao, Z.; Xiao, T.; Wang, S.; Huang, S.; Wei, B.; Liu, W. The novel electrical properties in quasi-2D hybrid improper ferroelectric Sr3Sn2O7 ceramic and the structural modulation. J. Am. Ceram. Soc. 2024, 107, 334–343. [Google Scholar] [CrossRef]
- Chandra, W.; Ang, L.K.; Pey, K.L.; Ng, C.M. Two-dimensional analytical Mott-Gurney law for a trap-filled solid. Appl. Phys. Lett. 2007, 90, 153505. [Google Scholar] [CrossRef]
Sample | Substrate Material | Target | Substrate Temperature (°C) | Programmed Cooling Time (h) | Laser Repetition Frequency (Hz) | Energy Density (J/cm2) | Deposited Time (min) | Oxygen Pressure (Pa) |
---|---|---|---|---|---|---|---|---|
a | Si <111> | A | 750 | — | 1 | 2.1 | 60 | 30 |
b | Si <100> | A | 750 | 6 | 1 | 2.1 | 60 | 30 |
c | Si <111> | B | 750 | 15 | 1 | 2.1 | 60 | 30 |
d | Si <111> | B | 750 | 15 | 3 | 2.1 | 20 | 30 |
e | Si <111> | B | 750 | 30 | 1 | 2.1 | 60 | 20 |
f | Si <100> | C | 750 | 5 | 3 | 1.35 | 20 | 20 |
g | Si <100> | D | 750 | 5 | 3 | 1.35 | 20 | 20 |
h | Si <100> | D | 650 | 4 | 3 | 1.35 | 20 | 20 |
i | Si <100> | D | 600 | 3.75 | 3 | 1.35 | 20 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Xiao, T.; Song, J.; Liu, H.; Zheng, D.; Kong, Y.; Xu, J. Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition. Crystals 2025, 15, 756. https://doi.org/10.3390/cryst15090756
Song S, Xiao T, Song J, Liu H, Zheng D, Kong Y, Xu J. Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition. Crystals. 2025; 15(9):756. https://doi.org/10.3390/cryst15090756
Chicago/Turabian StyleSong, Shaoqing, Tianqi Xiao, Jiashun Song, Hongde Liu, Dahuai Zheng, Yongfa Kong, and Jingjun Xu. 2025. "Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition" Crystals 15, no. 9: 756. https://doi.org/10.3390/cryst15090756
APA StyleSong, S., Xiao, T., Song, J., Liu, H., Zheng, D., Kong, Y., & Xu, J. (2025). Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition. Crystals, 15(9), 756. https://doi.org/10.3390/cryst15090756