Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. I-V Characteristics
3.2. Low-Frequency Noise Spectra
3.3. Noise Spectral Density vs. Current Characteristics
3.3.1. Influence of Grain Boundaries on Low-Frequency Noise
3.3.2. Identification of Poole–Frenkel Emission
3.4. Statistical Investigation and Defect Identification in Samples with Different H-BN Layer Thickness
3.4.1. Noise Intensity Between Samples with Different H-BN Layer Thickness
3.4.2. Assessment of Raman Spectra and Low-Frequency Noise Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
h-BN | Hexagonal boron nitride |
HIPIMS | High power impulse magnetron sputtering |
PECVD | Plasma-enhanced chemical vapor deposition |
CVD | Chemical vapor deposition |
FET | Field-effect transistor |
SU | Spectral density of voltage fluctuations’ |
SI | Spectral density of current fluctuations’ |
SR | Spectral density of resistance fluctuations’ |
I-V characteristics | Current–voltage characteristics |
Rd | Differential resistance |
Pos(G) | Position of G peak |
Pos(2D) | Position of 2D peak |
PF emission | Poole–Frenkel emission |
GB | Grain boundaries |
References
- Wang, C.; Behura, S.K.; Berry, V. Temperature Dependent Device Characteristics of Graphene/H-BN/Si Heterojunction. Semicond. Sci. Technol. 2020, 35, 075020. [Google Scholar] [CrossRef]
- Shen, J.; Liu, X.; Song, X.; Li, X.; Wang, J.; Zhou, Q.; Luo, S.; Feng, W.; Wei, X.; Lu, S.; et al. High-Performance Schottky Heterojunction Photodetector with Directly Grown Graphene Nanowalls as Electrodes. Nanoscale 2017, 9, 6020–6025. [Google Scholar] [CrossRef]
- An, Y.; Behnam, A.; Pop, E.; Bosman, G.; Ural, A. Forward-Bias Diode Parameters, Electronic Noise, and Photoresponse of Graphene/Silicon Schottky Junctions with an Interfacial Native Oxide Layer. J. Appl. Phys. 2015, 118, 114307. [Google Scholar] [CrossRef]
- Meškinis, Š.; Jankauskas, Š.; Vasiliauskas, A.; Stankus, V.; Guobienė, A.; Lukoševičius, K.; Jasutis, A.; Gudaitis, R. Graphene Direct Growth by Microwave PECVD on H-BN Films Deposited by Reactive HIPIMS. Nano Ex. 2025, 6, 025007. [Google Scholar] [CrossRef]
- An, Y.; Behnam, A.; Pop, E.; Ural, A. Metal-Semiconductor-Metal Photodetectors Based on Graphene/P-Type Silicon Schottky Junctions. Appl. Phys. Lett. 2013, 102, 013110. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Li, X.; Zang, X.; Zhen, Z.; Xie, D.; Fang, Y.; Zhu, H. Schottky Diode Characteristics and 1/f Noise of High Sensitivity Reduced Graphene Oxide/Si Heterojunction Photodetector. J. Appl. Phys. 2016, 119, 124303. [Google Scholar] [CrossRef]
- Kalita, G.; Shaarin, M.D.; Paudel, B.; Mahyavanshi, R.; Tanemura, M. Temperature Dependent Diode and Photovoltaic Characteristics of Graphene-GaN Heterojunction. Appl. Phys. Lett. 2017, 111, 013504. [Google Scholar] [CrossRef]
- Li, H.; Shi, Y.; Shang, H.; Wang, W.; Lu, J.; Zakharov, A.A.; Hultman, L.; Uhrberg, R.I.G.; Syväjärvi, M.; Yakimova, R.; et al. Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-To-Fuel Conversion. ACS Nano 2020, 14, 4905–4915. [Google Scholar] [CrossRef]
- Tomer, D.; Rajput, S.; Hudy, L.J.; Li, C.H.; Li, L. Carrier Transport in Reverse-Biased Graphene/Semiconductor Schottky Junctions. Appl. Phys. Lett. 2015, 106, 173510. [Google Scholar] [CrossRef]
- Quezada-Lopez, E.A.; Joucken, F.; Chen, H.; Lara, A.; Davenport, J.L.; Hellier, K.; Taniguchi, T.; Watanabe, K.; Carter, S.; Ramirez, A.P.; et al. Persistent and Reversible Electrostatic Control of Doping in Graphene/Hexagonal Boron Nitride Heterostructures. J. Appl. Phys. 2020, 127, 044303. [Google Scholar] [CrossRef]
- Wong, H.; Zhang, J.; Liu, J.; Anwar, M.A. On the Current Conduction and Interface Passivation of Graphene–Insulator–Silicon Solar Cells. Nanomaterials 2025, 15, 416. [Google Scholar] [CrossRef]
- Tomer, D.; Rajput, S.; Hudy, L.J.; Li, C.H.; Li, L. Inhomogeneity in Barrier Height at Graphene/Si (GaAs) Schottky Junctions. Nanotechnology 2015, 26, 215702. [Google Scholar] [CrossRef]
- Afzal, A.M.; Imran, M.; Iqbal, M.W.; Iqbal, M.Z.; Mumtaz, S.; Azeem, M.; Dastgeer, G.; Al-Ammar, E.A.; Ali, A. Surface Modification and Interface Engineering to Enhance the Performance of 2D-Graphene/3D-Silicon Schottky Junction Solar Cells. J. Mater. Sci. Mater. Electron. 2024, 35, 2165. [Google Scholar] [CrossRef]
- Sinha, D.; Lee, J.U. Ideal Graphene/Silicon Schottky Junction Diodes. Nano Lett. 2014, 14, 4660–4664. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, M.; Du, M.; Lv, Z.; Zhang, L.; Li, Y.; Yang, Y.; Yang, T.; Li, X.; Wang, K.; et al. High Detectivity Graphene-Silicon Heterojunction Photodetector. Small 2015, 12, 595–601. [Google Scholar] [CrossRef]
- Doukas, S.; Mensz, P.; Myoung, N.; Ferrari, A.C.; Goykhman, I.; Lidorikis, E. Thermionic Graphene/Silicon Schottky Infrared Photodetectors. Phys. Rev. B 2022, 105, 115417. [Google Scholar] [CrossRef]
- Pelella, A.; Grillo, A.; Faella, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene-Silicon Device for Visible and Infrared Photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [CrossRef]
- Ying, X.; Li, K.; Liu, L.; Wang, J.; Jiang, Y.; Xu, J.; Liu, Z. Spectral Photovoltaic Response of Graphene-Silicon Heterojunction. Appl. Phys. Lett. 2017, 111, 251106. [Google Scholar] [CrossRef]
- Casalino, M.; Russo, R.; Russo, C.; Ciajolo, A.; Di Gennaro, E.; Iodice, M.; Coppola, G. Free-Space Schottky Graphene/Silicon Photodetectors Operating at 2 μm. ACS Photonics 2018, 5, 4577–4585. [Google Scholar] [CrossRef]
- Selvi, H.; Unsuree, N.; Whittaker, E.; Halsall, M.P.; Hill, E.W.; Thomas, A.; Parkinson, P.; Echtermeyer, T.J. Towards Substrate Engineering of Graphene–Silicon Schottky Diode Photodetectors. Nanoscale 2018, 10, 3399–3409. [Google Scholar] [CrossRef]
- Wong, H.; Anwar, M.A.; Dong, S. Effects of Silicon Surface Defects on the Graphene/Silicon Schottky Characteristics. Results Phys. 2021, 29, 104744. [Google Scholar] [CrossRef]
- Jones, B.K. Electrical Noise as a Reliability Indicator in Electronic Devices and Components. IEE Proc. Circ. Dev. Syst. 2002, 149, 13–22. [Google Scholar] [CrossRef]
- Vandamme, L.K.J. Noise as a Diagnostic Tool for Quality and Reliability of Electronic Devices. IEEE Trans. Electron Dev. 1994, 41, 2176–2187. [Google Scholar] [CrossRef]
- Kirton, M.J.; Uren, M.J. Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/ƒ) Noise. Adv. Phys. 1989, 38, 367–468. [Google Scholar] [CrossRef]
- Palenskis, V.; Maknys, K. Nature of Low-Frequency Noise in Homogeneous Semiconductors. Sci. Rep. 2015, 5, 18305. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A. Low-Frequency 1/f Noise in Graphene Devices. Nat. Nanotechnol. 2013, 8, 549–555. [Google Scholar] [CrossRef]
- Arnold, H.N.; Sangwan, V.K.; Schmucker, S.W.; Cress, C.D.; Luck, K.A.; Friedman, A.L.; Robinson, J.T.; Marks, T.J.; Hersam, M.C. Reducing Flicker Noise in Chemical Vapor Deposition Graphene Field-Effect Transistors. Appl. Phys. Lett. 2016, 108, 073108. [Google Scholar] [CrossRef]
- Kumar, A.; Kashid, R.; Ghosh, A.; Kumar, V.; Singh, R. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode. ACS Appl. Mater. Inter. 2016, 8, 8213–8223. [Google Scholar] [CrossRef]
- Karnatak, P.; Paul, T.; Islam, S.; Ghosh, A. 1/f Noise in van Der Waals Materials and Hybrids. Adv. Phys. X 2017, 2, 428–449. [Google Scholar] [CrossRef]
- Kochat, V.; Tiwary, C.S.; Biswas, T.; Ramalingam, G.; Hsieh, K.; Chattopadhyay, K.; Raghavan, S.; Jain, M.; Ghosh, A. Magnitude and Origin of Electrical Noise at Individual Grain Boundaries in Graphene. Nano Lett. 2015, 16, 562–567. [Google Scholar] [CrossRef]
- Karnatak, P.; Sai, T.P.; Goswami, S.; Ghatak, S.; Kaushal, S.; Ghosh, A. Current Crowding Mediated Large Contact Noise in Graphene Field-Effect Transistors. Nat. Commun. 2016, 7, 13703. [Google Scholar] [CrossRef]
- Behera, A.K.; Harris, C.T.; Pete, D.V.; Smyth, C.M.; Muniz, M.B.; Koybasi, O.; Taniguchi, T.; Watanabe, K.; Belle, B.D.; Das, S.R. Charge-Inhomogeneity-Mediated Low-Frequency Noise in One-Dimensional Edge-Contacted Graphene Heterostructure Field Effect Transistors. ACS Appl. Nano Mater. 2024, 7, 12366–12375. [Google Scholar] [CrossRef]
- Kakkar, S.; Karnatak, P.; Aamir, A.; Watanabe, K.; Taniguchi, T.; Ghosh, A. Optimal Architecture for Ultralow Noise Graphene Transistors at Room Temperature. Nanoscale 2020, 12, 17762–17768. [Google Scholar] [CrossRef]
- Liu, G.; Stillman, W.; Rumyantsev, S.; Shao, Q.; Shur, M.; Balandin, A.A. Low-Frequency Electronic Noise in the Double-Gate Single-Layer Graphene Transistors. Appl. Phys. Lett. 2009, 95, 033103. [Google Scholar] [CrossRef]
- Glemža, J.; Palenskis, V.; Gudaitis, R.; Jankauskas, Š.; Guobienė, A.; Vasiliauskas, A.; Meškinis, Š.; Pralgauskaitė, S.; Matukas, J. Low-Frequency Noise of Directly Synthesized Graphene/Si(100) Junction. Diam. Relat. Mater. 2022, 127, 109207. [Google Scholar] [CrossRef]
- Kochat, V.; Sahoo, A.; Pal, A.N.; Eashwer, S.; Ramalingam, G.; Sampathkumar, A.; Tero, R.; Thu, T.V.; Kaushal, S.; Okada, H.; et al. Origin of 1/f Noise in Graphene Produced for Large-Scale Applications in Electronics. IET Circ. Device Syst. 2015, 9, 52–58. [Google Scholar] [CrossRef]
- Haigh, S.J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K.S.; Ponomarenko, L.A.; Geim, A.K.; Gorbachev, R. Cross-Sectional Imaging of Individual Layers and Buried Interfaces of Graphene-Based Heterostructures and Superlattices. Nat. Mater. 2012, 11, 764–767. [Google Scholar] [CrossRef]
- Chugh, S.; Mehta, R.; Lu, N.; Dios, F.D.; Kim, M.J.; Chen, Z. Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates Using Low-Temperature PECVD. Carbon 2015, 93, 393–399. [Google Scholar] [CrossRef]
- Khan, A.; Islam, S.M.; Ahmed, S.; Kumar, R.R.; Habib, M.R.; Huang, K.; Hu, M.; Yu, X.; Yang, D. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. Adv. Sci. 2018, 5, 1800050. [Google Scholar] [CrossRef]
- Meškinis, Š.; Gudaitis, R.; Vasiliauskas, A.; Guobienė, A.; Jankauskas, Š.; Stankevič, V.; Keršulis, S.; Stirkė, A.; Andriukonis, E.; Melo, W.; et al. Biosensor Based on Graphene Directly Grown by MW-PECVD for Detection of COVID-19 Spike (S) Protein and Its Entry Receptor ACE2. Nanomaterials 2023, 13, 2373. [Google Scholar] [CrossRef]
- Han, Z.; Li, M.; Li, L.; Jiao, F.; Wei, Z.; Geng, D.; Hu, W. When Graphene Meets White Graphene—Recent Advances in the Construction of Graphene and h-BN Heterostructures. Nanoscale 2021, 13, 13174–13194. [Google Scholar] [CrossRef]
- Wang, M.; Jang, S.K.; Jang, W.-J.; Kim, M.; Park, S.-Y.; Kim, S.-W.; Kahng, S.-J.; Choi, J.-Y.; Ruoff, R.S.; Song, Y.J.; et al. A Platform for Large-Scale Graphene Electronics—CVD Growth of Single-Layer Graphene on CVD-Grown Hexagonal Boron Nitride. Adv. Mater. 2013, 25, 2746–2752. [Google Scholar] [CrossRef]
- Yang, W.; Chen, G.; Shi, Z.; Liu, C.-C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Epitaxial Growth of Single-Domain Graphene on Hexagonal Boron Nitride. Nat. Mater. 2013, 12, 792–797. [Google Scholar] [CrossRef]
- Song, X.; Sun, J.; Qi, Y.; Gao, T.; Zhang, Y.; Liu, Z. Graphene/h-BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications. Adv. Energy Mater. 2016, 6, 1600541. [Google Scholar] [CrossRef]
- Entani, S.; Takizawa, M.; Li, S.; Naramoto, H.; Sakai, S. Growth of Graphene on SiO2 with Hexagonal Boron Nitride Buffer Layer. Appl. Surf. Sci. 2019, 475, 6–11. [Google Scholar] [CrossRef]
- Won, U.Y.; Lee, B.H.; Kim, Y.R.; Kang, W.T.; Lee, I.; Kim, J.E.; Lee, Y.H.; Yu, W.J. Efficient Photovoltaic Effect in Graphene/h-BN/Silicon Heterostructure Self-Powered Photodetector. Nano Res. 2021, 14, 1967–1972. [Google Scholar] [CrossRef]
- Stankus, V.; Vasiliauskas, A.; Guobienė, A.; Andrulevičius, M.; Meškinis, Š. Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering. Molecules 2024, 29, 5247. [Google Scholar] [CrossRef] [PubMed]
- Meškinis, Š.; Vasiliauskas, A.; Guobienė, A.; Talaikis, M.; Niaura, G.; Gudaitis, R. The Direct Growth of Planar and Vertical Graphene on Si(100) Via Microwave Plasma Chemical Vapor Deposition: Synthesis Conditions Effects. RSC Adv. 2022, 12, 18759–18772. [Google Scholar] [CrossRef] [PubMed]
- Jankauskas, Š.; Gudaitis, R.; Vasiliauskas, A.; Guobienė, A.; Meškinis, Š. The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/N-Si(100) Diodes. Nanomaterials 2022, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-S.; Lin, Y.-H.; Hwang, J.-Y.; Chang, R.; Chattopadhyay, S.; Chen, C.-J.; Chen, P.; Chiang, H.-P.; Tsai, T.-R.; Chen, L.-C.; et al. Imaging Layer Number and Stacking Order through Formulating Raman Fingerprints Obtained from Hexagonal Single Crystals of Few Layer Graphene. Nanotechnology 2012, 24, 015702. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Tian, J.; Chen, Y.P. Effect of Oxygen Plasma Etching on Graphene Studied Using Raman Spectroscopy and Electronic Transport Measurements. New J. Phys. 2011, 13, 025008. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Ado, J.; Souza, G.; Saito, R. Defect Characterization in Graphene and Carbon Nanotubes Using Raman Spectroscopy. Philos. Trans. R. Soc. A 2010, 368, 5355–5377. [Google Scholar] [CrossRef]
- Gupta, S.; Joshi, P.; Sachan, R.; Narayan, J. Fabricating Graphene Oxide/h-BN Metal Insulator Semiconductor Diodes by Nanosecond Laser Irradiation. Nanomaterials 2022, 12, 2718. [Google Scholar] [CrossRef]
- Parui, S.; Ruiter, R.; Zomer, P.J.; Wojtaszek, M.; van Wees, B.J.; Banerjee, T. Temperature Dependent Transport Characteristics of Graphene/N-Si Diodes. J. Appl. Phys. 2014, 116, 244505. [Google Scholar] [CrossRef]
- Palenskis, V. The Charge Carrier Capture–Emission Process—The Main Source of the Low-Frequency Noise in Homogeneous Semiconductors. Lith. J. Phys. 2017, 56, 200–206. [Google Scholar] [CrossRef]
- Palenskis, V.; Pralgauskaitė, S.; Matukas, J.; Glemža, J. Description of the Low-Frequency Noise for Homogeneous Semiconductors. In Proceedings of the 2023 International Conference on Noise and Fluctuations (ICNF), Grenoble, France, 17–20 October 2023. [Google Scholar] [CrossRef]
- Luo, M.-Y.; Bosman, G.; Der, V.; Hench, L.L. Theory and Experiments of 1/f Noise in Schottky-Barrier Diodes Operating in the Thermionic-Emission Mode. IEEE Trans. Electron Dev. 1988, 35, 1351–1356. [Google Scholar] [CrossRef]
- Meškinis, Š.; Gudaitis, R.; Vasiliauskas, A.; Tamulevičius, S.; Niaura, G. Multiwavelength Raman Scattering Spectroscopy Study of Graphene Synthesized on Si(100) and SiO2 by Microwave Plasma-Enhanced Chemical Vapor Deposition. Phys. Status Solidi Rapid Res. Lett. 2019, 14, 1900462. [Google Scholar] [CrossRef]
- Rajackaitė, E.; Peckus, D.; Gudaitis, R.; Andrulevičius, M.; Tamulevičius, T.; Volyniuk, D.; Meškinis, Š.; Tamulevičius, S. Transient Absorption Spectroscopy as a Promising Optical Tool for the Quality Evaluation of Graphene Layers Deposited by Microwave Plasma. Surf. Coat. Technol. 2020, 395, 125887. [Google Scholar] [CrossRef]
- Angelis, C.T.; Dimitriadis, C.A.; Samaras, I.; Brini, J.; Kamarinos, G.; Gueorguiev, V.K.; Ivanov, T.E. Study of Leakage Current in N-Channel and P-Channel Polycrystalline Silicon Thin-Film Transistors by Conduction and Low Frequency Noise Measurements. J. Appl. Phys. 1997, 82, 4095–4101. [Google Scholar] [CrossRef]
- Shin, W.; Min, K.K.; Bae, J.-H.; Yim, J.; Kwon, D.; Kim, Y.; Yu, J.; Hwang, J.; Park, B.-G.; Kwon, D.; et al. Comprehensive and Accurate Analysis of the Working Principle in Ferroelectric Tunnel Junctions Using Low-Frequency Noise Spectroscopy. Nanoscale 2022, 14, 2177–2185. [Google Scholar] [CrossRef]
- Im, K.-S.; Shin, S.; Jang, C.-H.; Cha, H.-Y. Low-Frequency Noise Characteristics in HfO2-Based Metal-Ferroelectric-Metal Capacitors. Materials 2022, 15, 7475. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Synthesis of Hexagonal Boron Nitride Films on Silicon and Sapphire Substrates by Low-Pressure Chemical Vapor Deposition. Thin Solid Film. 2021, 733, 138812. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef]
- Deng, N.; Wang, P.; Zhang, E.; Guo, B.; Li, D.; Ma, B.; Fleetwood, D.M.; Tian, H.; Zhang, J. Low-Frequency 1/f Noise in a Graphene/Silicon X-Ray Detector. In Proceedings of the IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Xi’an, China, 2–6 August 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, P.; Perini, C.; O’Hara, A.; Tuttle, B.R.; Zhang, E.X.; Gong, H.; Liang, C.; Jiang, R.; Liao, W.; Fleetwood, D.M.; et al. Radiation-Induced Charge Trapping and Low-Frequency Noise of Graphene Transistors. IEEE Trans. Nucl. Sci. 2018, 65, 156–163. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 227–228. [Google Scholar]
- Kajen, R.S.; Chandrasekhar, N.; Pey, K.L.; Vijila, C.; Jaiswal, M.; Saravanan, S.; Ng, A.M.H.; Wong, C.P.; Loh, K.P. Charge Transport in Lightly Reduced Graphene Oxide: A Transport Energy Perspective. J. Appl. Phys. 2013, 113, 0637110. [Google Scholar] [CrossRef]
Target | Deposition Temperature (°C) | Impulse On-time (ton) (μs) | Impulse Off-time (toff) (μs) | Average Impulse Current (A) | Average Voltage (V) | Substrate-Cathode Distance (cm) | Interlayer Thicknesses (nm) |
---|---|---|---|---|---|---|---|
Boron | 800 | 17 | 150 | 1.2 | 930 | 15 | 1, 3, 5, 15 |
Technological Process | Plasma Power (kW) | Temperature (°C) | H2 Gas Flow (sccm) | CH4 Gas Flow (sccm) | Pressure (mBar) | Time (min) |
---|---|---|---|---|---|---|
Graphene pre-treatment | 1 | 700 | 200 | 0 | 10 | 10 |
Graphene growth | 0.7 | 700 | 75 | 25 | 10 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glemža, J.; Pliaterytė, I.; Matukas, J.; Gudaitis, R.; Vasiliauskas, A.; Jankauskas, Š.; Meškinis, Š. Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions. Crystals 2025, 15, 747. https://doi.org/10.3390/cryst15090747
Glemža J, Pliaterytė I, Matukas J, Gudaitis R, Vasiliauskas A, Jankauskas Š, Meškinis Š. Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions. Crystals. 2025; 15(9):747. https://doi.org/10.3390/cryst15090747
Chicago/Turabian StyleGlemža, Justinas, Ingrida Pliaterytė, Jonas Matukas, Rimantas Gudaitis, Andrius Vasiliauskas, Šarūnas Jankauskas, and Šarūnas Meškinis. 2025. "Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions" Crystals 15, no. 9: 747. https://doi.org/10.3390/cryst15090747
APA StyleGlemža, J., Pliaterytė, I., Matukas, J., Gudaitis, R., Vasiliauskas, A., Jankauskas, Š., & Meškinis, Š. (2025). Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions. Crystals, 15(9), 747. https://doi.org/10.3390/cryst15090747