The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. DSSC Cell Preparation Procedure
2.2. Dyes and Electrolytes
2.3. Preparation of Samples with Liquid Crystal
2.4. The Current–Voltage Characteristics
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strateg. Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic solar cells: A review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Schropp, R.E.I.; Carius, R.; Beaucarne, G. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells. MRS Bull. 2007, 32, 219–223. [Google Scholar] [CrossRef]
- Nakajima, K.; Usami, N. (Eds.) Crystal Growth of Si for Solar Cells; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef]
- Konagai, M. Present status and future prospects of silicon thin-film solar cells. Jpn. J. Appl. Phys. 2011, 50, 030001. [Google Scholar] [CrossRef]
- Pandey, A.K.; Shahabuddin, S.; Ahmad, M.S. (Eds.) Dye-Sensitized Solar Cells; Elsevier Academic Press: London, UK, 2022. [Google Scholar]
- Rawal, N.; Vaishaly, A.G.; Sharma, H.; Mathew, B.B. Dye sensitized solar cells: The emerging technology. Energy Power Eng. Sci. 2015, 2, 46–52. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res. 2004, 19, 1924–1945. [Google Scholar] [CrossRef]
- Andualem, A.; Demiss, S. Review on dye-sensitized solar cells (DSSCs). J. Heterocycl. 2018, 1, 29–34. [Google Scholar] [CrossRef]
- Bera, S.; Sengupt, D.; Roy, S.; Mukherjee, K. Research into dye-sensitized solar cells: A review highlighting progress in India. J. Phys. Energy 2021, 3, 032013. [Google Scholar] [CrossRef]
- Uchida, J.; Soberats, B.; Gupta, M.; Kato, T. Advanced functional liquid crystals. Adv. Mater. 2022, 34, 2109063. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards next generation of materials. Angew. Chem. 2018, 57, 4355–4371. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319. [Google Scholar] [CrossRef]
- Smaisim, G.F.; Mohammed, K.J.; Hadrawi, S.K.; Koten, H.; Kianfar, E. Properties and application of nanostructure in liquid crystals: Review. BioNanoScience 2013, 13, 819. [Google Scholar] [CrossRef]
- Huang, C.Y.; You, C.F.; Cheng, C.E.; Lei, B.C.; Jhang, J.C.; Yu, F.C.; Chang, C.S.; Sen Chien, F.S. Liquid crystal-doped liquid electrolytes for dye sensitized solar cell applications. Opt. Mater. Express 2016, 6, 1024–1031. [Google Scholar] [CrossRef]
- Ahmad, Z.; Hong, Z.; Viswanathan, V. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. Proc. Natl. Acad. Sci. USA 2020, 117, 26672–26680. [Google Scholar] [CrossRef]
- Sasi, R.; Sarojam, S.; Devaki, S.J. High performing biobased ionic liquid crystal electrolytes for supercapacitors. ACS Sustain. Chem. Eng. 2016, 4, 3535–3543. [Google Scholar] [CrossRef]
- Ruan, Q.; Yao, M.; Yuan, D.; Dong, H.; Liu, J.; Yuan, X.; Fang, W.; Zhao, G.; Zhang, H. Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy 2023, 106, 108087. [Google Scholar] [CrossRef]
- Devaki, S.J.; Sasi, R. Ionic liquids/ionic liquid crystals for safe and sustainable energy storage systems. In Progress and Developments in Ionic Liquids; Handy, S., Ed.; InTechOpen: London, UK, 2017; pp. 313–336. [Google Scholar] [CrossRef]
- Moisés, I.A.; Innocenti, A.; Somville, M.; Notredame, B.; Passerini, S.; Gohy, J.-F. Liquid crystals as additives in solid polymer electrolytes for lithium metal batteries. MRS Adv. 2023, 8, 797–802. [Google Scholar] [CrossRef]
- Ghosh, S.; Ramos, L.; Remita, H. Swollen hexagonal liquid crystals as smart nanoreactors: Implementation in material chemistry for energy applications. Nanoscale 2018, 10, 5793–5819. [Google Scholar] [CrossRef]
- BinSabt, M.H.; Atta, N.F.; Ahmed, Y.M.; Galal, A. Nanostructured Pt-Ru /ionic liquid crystal composite for electrocatalytic oxidation of methanol. Int. J. Electrochem. Sci. 2017, 12, 11271–11286. [Google Scholar] [CrossRef]
- Ana, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Nano-Micro Small 2022, 18, 2103617. [Google Scholar] [CrossRef]
- Kapernaum, N.; Lange, A.; Ebert, M.; Grunwald, M.A.; Haege, C.; Marino, S.; Zens, A.; Taubert, A.; Giesselmann, F.; Laschat, S. Current topics in ionic liquid crystals. ChemPlusChem 2022, 86, e202100397. [Google Scholar] [CrossRef]
- Lu, F.; Gao, X.; Dong, B.; Sun, P.; Sun, N.; Xie, S. Nanostructured proton conductors formed via in situ polymerization of ionic liquid crystals. ACS Appl. Mater. Interfaces 2014, 6, 21970–21977. [Google Scholar] [CrossRef]
- Salikolimi, K.; Sudhakar, A.A.; Ishida, Y. Functional ionic liquid crystals. Langmuir 2020, 36, 11702–11731. [Google Scholar] [CrossRef] [PubMed]
- Högberg, D.; Soberats, B.; Uchida, S.; Yoshio, M.; Kloo, L.; Segawa, H.; Kato, T. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem. Mater. 2014, 26, 6496–6502. [Google Scholar] [CrossRef]
- Högberg, D.; Soberats, B.; Yoshio, M.; Mizumura, Y.; Uchida, S.; Kloo, L.; Segawa, H.; Kato, T. Self-assembled liquid-crystalline ion conductors in dye-sensitized solar cells: Effects of molecular sensitizers on their performance. ChemPlusChem 2017, 82, 834–840. [Google Scholar] [CrossRef]
- Chen, R.; Weng, Q.; An, Z.; Zhu, S.; Wang, Q.; Chen, X.; Chen, P. Investigation of 4-pyridyl liquid crystals on the photovoltaic performance and stability of dye sensitized solar cells by the co-sensitization. Dye. Pigm. 2018, 159, 527–532. [Google Scholar] [CrossRef]
- Solaronix Materials. Available online: www.solaronix.com (accessed on 24 July 2025).
- Hossain, M.K.; Pervez, M.F.; Mia, M.N.H.; Mortuz, A.A.; Rahaman, M.S.; Karim, M.R.; Islam, J.M.M.; Ahmed, F.; Khan, M.A. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 2017, 7, 1516–1523. [Google Scholar] [CrossRef]
- Krawczak, E.; Zdyb, A. The effect of electrode immersion time and ageing on N719 dye-sensitized solar cells performance. J. Ecol. Eng. 2020, 21, 53–60. [Google Scholar] [CrossRef]
- Bakr, N.A.; Ali, A.R.K.; Jassim, S.M.; Hasoon, K.I. Effect of N719 dye concentration on the conversion efficiency of Dye Sensitized Solar Cells (DSSCs). Zanco J. Pure Appl. Sci. 2017, 29, 274–280. [Google Scholar]
- Rahman, M.Y.A.; Umar, A.A.; Roza, L.A.; Salleh, M.M. Effect of organic dye on the performance of dye sensitized solar cell utilizing TiO2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique. Russ. J. Electrochem. 2014, 50, 1072. [Google Scholar] [CrossRef]
- Thoms, E.; Yu, L.; Richert, R. From very low to high fields: The dielectric behavior of the liquid crystal 5CB. J. Mol. Liq. A 2022, 368, 120664. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Lu, R.J.; Dierking, I. Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions. J. Mol. Liq. 2023, 383, 122178. [Google Scholar] [CrossRef]
- Tamrakar, V.; Gupta, S.C.; Yashwant, S. Single-diode PV cell modeling and study of characteristics of single and two-diode equivalent circuit. Int. J. Electr. Electron. Eng. 2015, 4, 13–24. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Hao, Y.; Lin, Z.; Zhu, C. A simple and efficient solar cell parameter extraction method from a single current-voltage curve. J. Appl. Phys. 2011, 110, 064504. [Google Scholar] [CrossRef]
- Ishibashi, K.; Kimura, Y.; Niwano, M. An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic. J. Appl. Phys. 2008, 103, 094507. [Google Scholar] [CrossRef]
- de Andrade, R.L.; de Oliveira, M.C.; Kohlrausch, E.C.; Santos, M.J.L. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation. J. Phys. Chem. Solids 2018, 116, 273–280. [Google Scholar] [CrossRef]
- Chegaar, M.; Hamzaoui, A.; Namoda, A.; Petit, P.; Aillerie, M.; Herguth, A. Effect of illumination intensity on solar cells parameters. Energy Procedia 2013, 36, 722–729. [Google Scholar] [CrossRef]
- Różański, S.A. Determination of the current-voltage characteristics of the photovoltaic cells using the CoachLabII+ measuring console. J. Autom. Electron. Electr. Eng. 2022, 4, 31–38. [Google Scholar] [CrossRef]
- Breitenstein, O. Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions. Opto-Electron. Rev. 2013, 21, 259–282. [Google Scholar] [CrossRef]
- Rahman, M.Y.A.; Umar, A.A.; Taslim, R.; Salleh, M.M. Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique. Electrochim. Acta 2013, 88, 639–643. [Google Scholar] [CrossRef]
- Zhu, J.S.; Su, Y.; Liu, Y.; Niu, X.; Zhang, W.; Chen, W. Liquid crystals as electrolyte additives for improving the transmission paths of redox couples and performances of dye-sensitized solar cells. Opt. Mater. 2024, 149, 115007. [Google Scholar] [CrossRef]
- You, C.-F.; Cheng, C.-E.; Lei, B.-C.; Jhang, J.-C.; Yu, F.-C.; Chang, C.-S.; Chien, F.S.-S.; Huang, C.-Y. Improvement of the efficiency of dye-sensitized solar cells with fluorinated carbon-based liquid crystal dopant. Chin. J. Phys. 2017, 55, 1189. [Google Scholar] [CrossRef]
- Kamarudin, M.A.B. Integration of Liquid Crystals with Redox Electrolytes in Dye-Sensitised Solar Cells. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2017. [Google Scholar]
- Lee, D.K.; Suresh, T.; Yun, H.J.; Kim, Y.R.; Kim, J.H. Effect of temperature on the photovoltaic performance of dye-sensitized solar cells based on an iodine quasi-solid state electrolyte. Sci. Adv. Mater. 2016, 8, 1116–1121. [Google Scholar] [CrossRef]
- Raga, S.R.; Fabregat-Santiago, F. Temperature effects in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 2328–2336. [Google Scholar] [CrossRef]
N3 | |||
---|---|---|---|
L [W/m2] | 53 | 121 | 254 |
ISC [A] | 1.85 × 10−4 | 4.63 × 10−4 | 9.69 × 10−4 |
VOC [V] | 0.61 | 0.65 | 0.69 |
P0 [W] | 1.13 × 10−4 | 3.01 × 10−4 | 6.69 × 10−4 |
Pmax [W] | 0.80 × 10−4 | 2.05 × 10−4 | 4.07 × 10−4 |
FF | 0.71 | 0.68 | 0.61 |
η [%] | 4.19 | 4.70 | 4.43 |
Iph [A] | (1.826 ± 0.004) × 10−4 | (4.64 ± 0.01) × 10−4 | (9.69 ± 0.11) × 10−4 |
I0 [A] | (2.19 ± 0.37) × 10−9 | (7.33 ± 1.27) × 10−8 | (2.39 ± 0.58) × 10−6 |
n | 18.5 ± 0.3 | 13.5 ± 0.3 | 8.8 ± 0.4 |
N719 | |||
---|---|---|---|
L [W/m2] | 53 | 121 | 254 |
ISC [A] | 1.00 × 10−4 | 2.56 × 10−4 | 5.04 × 10−4 |
VOC [V] | 0.60 | 0.65 | 0.67 |
P0 [W] | 0.60 × 10−4 | 1.66 × 10−4 | 3.40 × 10−4 |
Pmax [W] | 0.41 × 10−4 | 1.12 × 10−4 | 2.11 × 10−4 |
FF | 0.68 | 0.67 | 0.62 |
η [%] | 2.15 | 2.57 | 2.30 |
Iph [A] | (1.004 ± 0.002) × 10−4 | (2.560 ± 0.003) × 10−4 | (5.04 ± 0.02) × 10−4 |
I0 [A] | (4.84 ± 0.66) × 10−9 | (2.00 ± 0.17) × 10−8 | (5.90 ± 0.68) × 10−7 |
n | 16.5 ± 0.2 | 14.7 ± 0.1 | 10.0 ± 0.2 |
Z907 | |||
---|---|---|---|
L [W/m2] | 53 | 121 | 254 |
ISC [A] | 1.29 × 10−4 | 3.10 × 10−4 | 6.57 × 10−4 |
VOC [V] | 0.61 | 0.64 | 0.67 |
P0 [W] | 0.79 × 10−4 | 1.98 × 10−4 | 4.40 × 10−4 |
Pmax [W] | 0.54 × 10−4 | 1.32 × 10−4 | 2.82 × 10−4 |
FF | 0.68 | 0.67 | 0.64 |
η [%] | 2.83 | 3.03 | 3.07 |
Iph [A] | (1.278 ± 0.003) × 10−4 | (3.105 ± 0.003) × 10−4 | (6.59 ± 0.03) × 10−4 |
I0 [A] | (1.24 ± 0.27) × 10−9 | (4.81 ± 0.34) × 10−8 | (5.27 ± 0.96) × 10−7 |
n | 19.04 ± 0.4 | 13.7 ± 0.1 | 10.7 ± 0.3 |
Sample | ISC [A] | VOC [V] | P0 [W] | Pmax [W] | FF | η [%] | Iph [A] | I0 [A] | n |
---|---|---|---|---|---|---|---|---|---|
N3 | 9.54 × 10−4 | 0.687 | 6.55 × 10−4 | 4.07 × 10−4 | 0.62 | 4.4 | (9.69 ± 0.11) × 10−4 | (2.39 ± 0.58) × 10−6 | 8.8 ± 0.4 |
Z907 | 6.60 × 10−4 | 0.665 | 4.39 × 10−4 | 2.82 × 10−4 | 0.64 | 3.1 | (6.59 ± 0.03) × 10−4 | (5.27 ± 0.96) × 10−7 | 10.7 ± 0.3 |
N719 | 5.04 × 10−4 | 0.674 | 3.40 × 10−4 | 2.11 × 10−4 | 0.62 | 2.3 | (5.04 ± 0.02) × 10−4 | (5.90 ± 0.68) × 10−7 | 10.0 ± 0.2 |
N3 Dye [% wt] | ISC [A] | VOC [V] | P0 [W] | Pmax [W] | FF | η [%] | Iph [A] | I0 [A] | n |
---|---|---|---|---|---|---|---|---|---|
0.05 | 2.93 × 10−4 | 0.627 | 1.84 × 10−4 | 1.41 × 10−4 | 0.77 | 3.2 | (2.932 ± 0.004) × 10−4 | (4.42 ± 0.74) × 10−11 | 25.0 ± 0.3 |
0.07 | 3.20 × 10−4 | 0.665 | 3.16 × 10−4 | 1.67 × 10−4 | 0.53 | 3.8 | (3.199 ± 0.009) × 10−4 | (4.75 ± 1.76) × 10−11 | 23.6 ± 0.5 |
0.09 | 4.75 × 10−4 | 0.635 | 3.02 × 10−4 | 2.22 × 10−4 | 0.74 | 5.1 | (4.750 ± 0.008) × 10−4 | (1.13 ± 0.23) × 10−9 | 20.5 ± 0.3 |
Sample | ISC [A] | VOC [V] | P0 [W] | Pmax [W] | FF | η [%] | Iph [A] | I0 [A] | n |
---|---|---|---|---|---|---|---|---|---|
N3 | 1.08 × 10−3 | 0.652 | 7.04 × 10−4 | 4.2 × 10−4 | 0.60 | 4.6 | (1.080 ± 0.004) × 10−3 | (5.45 ± 0.61) × 10−6 | 8.1 ± 0.2 |
10% wt 5CB | 1.20 × 10−3 | 0.667 | 8.01 × 10−4 | 5.61 × 10−4 | 0.70 | 6.1 | (1.200 ± 0.004) × 10−3 | (8.76 ± 1.26) × 10−8 | 14.3 ± 0.2 |
15% wt 5CB | 0.94 × 10−3 | 0.709 | 6.69 × 10−4 | 4.89 × 10−4 | 0.73 | 5.3 | (0.944 ± 0.004) × 10−3 | (6.33 ± 1.80) × 10−9 | 16.8 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szubert, P.; Różański, S.A. The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells. Crystals 2025, 15, 705. https://doi.org/10.3390/cryst15080705
Szubert P, Różański SA. The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells. Crystals. 2025; 15(8):705. https://doi.org/10.3390/cryst15080705
Chicago/Turabian StyleSzubert, Paweł, and Stanisław A. Różański. 2025. "The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells" Crystals 15, no. 8: 705. https://doi.org/10.3390/cryst15080705
APA StyleSzubert, P., & Różański, S. A. (2025). The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells. Crystals, 15(8), 705. https://doi.org/10.3390/cryst15080705