Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Characterizations
3.2. Mechanical Properties
4. Discussion
4.1. Effect of Nd Alloying on Precipitation Nucleation and Growth
4.2. Strengthening Mechanism
5. Conclusions
- Grain Size Evolution: Increasing Nd content from 0.5 to 5 wt.% led to a progressive increase in grain size, contradicting the expected grain-refining effect of RE elements. This was attributed to early precipitation of intermetallics that failed to provide sufficient Zener pinning.
- Phase Composition: SEM and XRD analyses confirmed the formation of secondary phases such as Mg41Nd5 and Mg3Nd, with their volume fraction rising in parallel with Nd content. These phases contributed significantly to the alloy’s strengthening behavior.
- Mechanical Strengthening: Both microhardness and yield strength improved notably with higher Nd levels. The Mg-2.5Zn-5Nd alloy exhibited the highest hardness (58 HV) and tensile yield strength (186.8 MPa), underscoring the strengthening effect of Nd-rich intermetallics.
- Ductility Balance: Despite strength gains, elongation dropped sharply to below 2% in the higher Nd-containing alloys, highlighting a brittle fracture mechanism linked to intermetallic phase morphology and distribution.
- Elastic Properties: The elastic modulus and shear modulus remained relatively constant across all compositions, preserving compatibility with the mechanical properties of human bone.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Saxena, K.; Malik, V.R.; Mohammed, K.A.; Prakash, C.; Buddhi, D.; Dixit, S. Significance of alloying elements on the mechanical characteristics of Mg-based materials for biomedical applications. Crystals 2022, 12, 1138. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Bai, J.; Xue, F.; Zeng, R.C.; Wang, G.M.; Chu, P.K.; Chu, C.L. Smart self-healing coatings on biomedical magnesium alloys: A review. Smart Mater. Manuf. 2023, 1, 100022. [Google Scholar] [CrossRef]
- Jiang, P.; Blawert, C.; Zheludkevich, M. The corrosion performance and mechanical properties of Mg-Zn based alloys—A review. Corros. Mater. Degrad. 2020, 1, 92–158. [Google Scholar] [CrossRef]
- Qin, H.; Zhao, Y.; An, Z.; Cheng, M.; Wang, Q.; Cheng, T.; Zhang, X. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. Biomaterials 2015, 53, 211–220. [Google Scholar] [CrossRef]
- Hu, Q.J.; Chen, C.; Liu, M.; Chang, C.; Yan, X.C.; Dai, Y.L. Improved corrosion resistance of magnesium alloy prepared by selective laser melting through T4 heat treatment for biomedical applications. J. Mater. Res. Technol. 2023, 27, 813–825. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhu, Q.; Zhang, H.; Qi, X.; Wang, J.; Jin, P.; Zeng, X. Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy. J. Magnes. Alloy. 2021, 9, 499–504. [Google Scholar] [CrossRef]
- Jin, Z.Z.; Zha, M.; Wang, S.Q.; Wang, S.C.; Wang, C.; Jia, H.L.; Wang, H.Y. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloy. 2022, 10, 1191–1206. [Google Scholar] [CrossRef]
- Wei, X.; Ren, L.; Le, Q.; Wang, Y.; Liu, L.; Zhang, X.; Cao, J.; Liao, Q.; Wang, T. Mg-xNd-Zn-Zr alloys prepared by in-situ reduction: Study of microstructure, corrosion behavior, and mechanical properties. Mater. Today Commun. 2025, 42, 111277. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. [Google Scholar] [CrossRef]
- Guo, X.; Hu, Y.; Yuan, K.; Qiao, Y. Review of the effect of surface coating modification on magnesium alloy biocompatibility. Materials 2022, 15, 3291. [Google Scholar] [CrossRef]
- Cai, S.; Lei, T.; Li, N.; Feng, F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater. Sci. Eng. 2012, 32, 2570–2577. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2009, 6, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Blawert, C.; Yang, H.; Wiese, B.; Feyerabend, F.; Bohlen, J.; Mei, D.; Deng, M.; Campos, M.S.; Scharnagl, N.; et al. Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Mater. Des. 2020, 195, 108980. [Google Scholar] [CrossRef]
- Jin, Y.; Blawert, C.; Feyerabend, F.; Bohlen, J.; Campos, M.S.; Gavras, S.; Wiese, B.; Mei, D.; Deng, M.; Yang, H.; et al. Time-sequential corrosion behaviour observation of micro-alloyed Mg-0.5Zn-0.2Ca alloy via a quasi-in situ approach. Corros. Sci. 2019, 158, 108096. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals, 1st ed.; Crc Press: Boca Raton, FL, USA, 2003; pp. 20–50. [Google Scholar]
- Penghuai, F.; Liming, P.; Haiyan, J.; Jianwei, C.; Chunquan, Z. Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Mat. Sci. Eng. A 2007, 486, 183–192. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.; Ke, W. Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy. Mat. Des. 2014, 58, 324–331. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wang, W.; Huang, H.; Pei, J.; Qu, H.; Yuan, G.; Li, Y. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomater. 2018, 69, 372–384. [Google Scholar] [CrossRef]
- Wilson, R.; Bettles, C.; Muddle, B.C.; Nie, J.F. Precipitation Hardening in Mg-3 wt%Nd(-Zn) Casting Alloys. Mat. Sci. Forum 2003, 419, 267–272. [Google Scholar] [CrossRef]
- Du, B.; Hu, Z.; Sheng, L.; Xu, D.; Zheng, Y.; Xi, T. Influence of Zn content on microstructure and tensile properties of Mg–Zn–Y–Nd alloy. Acta Met. Sin. (Engl. Lett.) 2018, 31, 351–361. [Google Scholar] [CrossRef]
- Koç, E.; Kannan, M.; Ünal, M.; Candan, E. Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys. J. Alloys Compd. 2015, 648, 291–296. [Google Scholar] [CrossRef]
- Du, B.; Hu, Z.; Wang, J.; Sheng, L.; Zhao, H.; Zheng, Y.; Xi, T. Effect of extrusion process on the mechanical and in vitro degradation performance of a biomedical Mg-Zn-Y-Nd alloy. Bioact. Mater. 2020, 5, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, M.; Gerashi, E.; Alizadeh, R.; Mahmudi, R. Effect of Zn content and processing route on the microstructure, mechanical properties, and biodegradation of Mg–Zn alloys. J. Mater. Res. Technol. 2022, 21, 4473–4489. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Z.; Zhou, T.; Chen, L. Microstructure and mechanical properties of expanded Mg-Zn-Nd alloys. J. Shenyang Univ. Technol. 2008, 35, 433–436. [Google Scholar]
- Xu, S.; Teng, X.; Ge, X. Effect of Nd content and heat treatment on microstructure and mechanical properties of Mg-Zn-Nd alloy. Mater. Sci. Forum 2017, 898, 124–130. [Google Scholar] [CrossRef]
- Javaid, A.; Hadadzadeh, A.; Czerwinski, F. Solidification behavior of dilute Mg-Zn-Nd alloys. J. Alloys Compd. 2018, 782, 132–148. [Google Scholar] [CrossRef]
- Gao, M.; Yang, K.; Tan, L. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bidirection drawing. J. Mater. Sci. Technol. 2021, 81, 88–96. [Google Scholar] [CrossRef]
- ASTM, E112-96; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2004.
- Zhang, Z.; Kim, J.; Pu, H.; Zhou, S.; Hu, Y.; Dong, Z.; Huang, G.; Jiang, B. Achieving high strength in ZK60-based Mg alloy with a low RE content through numerous precipitates. J. Alloys Compd. 2025, 1023, 180118. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Tang, C.; Deng, Y.; Liu, Z.; Yang, L. Microstructures and mechanical properties of the Mg–8Gd–4Y–Nd–Zn–3Si alloy. Mater. Sci. Eng. A 2013, 571, 19–24. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, W.; Zhang, Y.; Guan, J.; Xu, Y. Microstructure, mechanical properties and damping capacity of heat-treated Mg–Zn–Y–Nd–Zr alloy. Mater. Sci. Eng. A 2014, 609, 283–292. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; Li, J.; Feng, Y.; Wang, L.; Wang, Z.; Guo, E. Precipitation behavior and mechanical properties of Mg-Nd-Sm-Zn-Zr alloy. J. Mater. Res. Technol. 2024, 28, 3385–3395. [Google Scholar] [CrossRef]
- Gavras, S.; Buzolin, R.H.; Subroto, T.; Stark, A.; Tolnai, D. The effect of Zn content on the mechanical properties of Mg-4Nd-xZn alloys. Materials 2018, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wen, M.; Wang, J.; Xu, D.; Zheng, Y.; Sheng, L. Regulating microstructure and mechanical properties of the as-cast Mg-4Zn-0.5Y-0.5Nd alloy by heat treatment. J. Alloys Compd. 2025, 1010, 177232. [Google Scholar] [CrossRef]
- Li, B.; Guan, K.; Yang, Q.; Niu, X.; Zhang, D.; Yu, Z.; Zhang, X.; Tang, Z.; Meng, J. Effects of 0.5 wt% Ce addition on microstructures and mechanical properties of a wrought Mg−8Gd−1.2Zn−0.5Zr alloy. J. Alloys Compd. 2018, 763, 120–133. [Google Scholar] [CrossRef]
- Hua, X.; Yang, Q.; Zhang, D.; Meng, F.; Chen, C.; You, Z.; Zhang, J.; Lv, S.; Meng, J. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy. J. Mater. Res. Technol. 2020, 53, 174–184. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Wang, Y.; Zeng, X.; Ding, W. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J. Alloys Compd. 2007, 427, 115–123. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhong, Z.; Kainer, K.; Hort, N. Effects of Gadolinium and Neodymium Addition on Young’s Modulus of Magnesium-Based Binary Alloys. In Magnesium Technology 2017; Solanki, K., Orlov, D., Singh, A., Neelameggham, N., Eds.; Springer, International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Easton, M.; Davidson, C.; StJohn, D. Grain morphology of as-cast wrought aluminium alloys. Mater. Trans. 2011, 52, 842–847. [Google Scholar] [CrossRef]
- Nie, J. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 2003, 48, 1009–1015. [Google Scholar] [CrossRef]
- Bryla, K.; Horky, J. Magnesium Alloys Processed by Severe Plastic Deformation (SPD) for Biomedical Applications: An Overview. Mater. Trans. 2023, 64, 1709–1723. [Google Scholar] [CrossRef]
- Mirzadeh, H. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. J. Mater. Res. Technol. 2023, 25, 7050–7077. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Xiao, L.; Kan, Z.; Guo, J.; Li, Q.; Jie, W. Effects of the extrusion parameters on microstructure, texture and room temperature mechanical properties of extruded Mg–2.49Nd–1.82Gd–0.2Zn–0.2Zr alloy. Int. J. Miner. Metall. Mater. 2025, 32, 136–146. [Google Scholar] [CrossRef]
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. J. Magnes. Alloys 2024, 12, 2569–2594. [Google Scholar] [CrossRef]
- Lin, X.; Saijilafu, N.; Wu, X.; Wu, K.; Chen, J.; Tan, L.; Witte, F.; Yang, H.; Mantovani, D.; Zhou, H.; et al. Biodegradable Mg-based alloys: Biological implications and restorative opportunities. Int. Mater. Rev. 2023, 68, 365–403. [Google Scholar] [CrossRef]
Alloys | Zn | Nd | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|
Mg-2.5Zn-0.5Nd | 2.48 | 0.47 | 0.0048 | 0.0005 | 0.0001 | Bal. |
Mg-2.5Zn-2Nd | 2.50 | 1.81 | 0.0056 | 0.0005 | 0.0001 | Bal. |
Mg-2.5Zn-5Nd | 2.53 | 4.72 | 0.0075 | 0.0008 | 0.0001 | Bal. |
Alloys | Mg-2.5Zn-0.5Nd | Mg-2.5Zn-2Nd | Mg-2.5Zn-5Nd |
---|---|---|---|
Grain size (µm) | 153 ± 17 | 167 ± 66 | 215 ± 63 |
Positions (at%) | A | B | C |
---|---|---|---|
Mg | 99.54 | 88.74 | 73.74 |
Nd | 0.34 | 11.12 | 23.44 |
Zn | 0.12 | 0.14 | 2.81 |
Alloys | Hardness (HV) |
---|---|
Mg-2.5Zn-0.5Nd | 42 ± 4.1 |
Mg-2.5Zn-2Nd | 48 ± 2.7 |
Mg-2.5Zn-5Nd | 59 ± 6.4 |
Alloys | E-Modulus (GPa) | Shear Modulus (GPa) |
---|---|---|
Mg-2.5Zn-0.5Nd | 44.56 ± 0.30 | 16.47 ± 0.14 |
Mg-2.5Zn-2Nd | 45.05 ± 0.14 | 16.67 ± 0.12 |
Mg-2.5Zn-5Nd | 43.99 ± 0.22 | 16.23 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mert, F. Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications. Crystals 2025, 15, 641. https://doi.org/10.3390/cryst15070641
Mert F. Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications. Crystals. 2025; 15(7):641. https://doi.org/10.3390/cryst15070641
Chicago/Turabian StyleMert, Faruk. 2025. "Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications" Crystals 15, no. 7: 641. https://doi.org/10.3390/cryst15070641
APA StyleMert, F. (2025). Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications. Crystals, 15(7), 641. https://doi.org/10.3390/cryst15070641