Effects of Preheating on the Mechanical Properties of Dental Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Specimens
2.2. Thermocycling
2.3. Mechanical Testing
- Flexural Strength Test
- Vickers Microhardness Test
- Shear Bond Strength Test
2.4. Failure Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skapska, A.; Komorek, Z.; Cierech, M.; Mierzwinska-Nastalska, E. Comparison of mechanical properties of a self-adhesive composite cement and a heated composite material. Polymers 2022, 14, 2686. [Google Scholar] [CrossRef]
- Acquaviva, P.A.; Cerutti, F.; Adami, G.; Gagliani, M.; Ferrari, M.; Gherlone, E.; Cerutti, A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: A micro-raman analysis. J. Dent. 2009, 37, 610–615. [Google Scholar] [CrossRef]
- Sinha, I. Adhesive cementation of ceramic restorations: A comprehensive review. INNOSC Theranostics Pharmacol. Sci. 2023, 6, 28–34. [Google Scholar] [CrossRef]
- Hill, E.E.; Lott, J. A clinically focused discussion of luting materials. Aust. Dent. J. 2011, 56 (Suppl. S1), 67–76. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.K.; Wong, A.W.; Chu, C.H.; Yu, O.Y. Update on dental luting materials. Dent. J. 2022, 10, 208. [Google Scholar] [CrossRef]
- Maletin, A.; Knezevic, M.J.; Koprivica, D.D.; Veljovic, T.; Puskar, T.; Milekic, B.; Ristic, I. Dental resin-based luting materials—Review. Polymers 2023, 15, 4156. [Google Scholar] [CrossRef]
- Stamatacos, C.; Simon, J.F. Cementation of indirect restorations: An overview of resin cements. Compend. Contin. Educ. Dent. 2013, 34, 42–44, 46. [Google Scholar] [PubMed]
- Lee, S.M.; Choi, Y.S. Effect of ceramic material and resin cement systems on the color stability of laminate veneers after accelerated aging. J. Prosthet. Dent. 2018, 120, 99–106. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Owais, M.M.; Amer, A.H.B.; Almutairi, K.B. Color stability and degree of conversion of a novel dibenzoyl germanium derivative containing photo-polymerized resin luting cement. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020917326. [Google Scholar] [CrossRef]
- Bouschlicher, M.R.; Rueggeberg, F.A. Effect of ramped light intensity on polymerization force and conversion in a photoactivated composite. J. Esthet. Restor. Dent. 2000, 12, 328–339. [Google Scholar] [CrossRef]
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental resin composites: A review on materials to product realizations. Compos. Part B Eng. 2022, 230, 109495. [Google Scholar]
- Lopes, G.C.; Vieira, L.C.; Araujo, E. Direct composite resin restorations: A review of some clinical procedures to achieve predictable results in posterior teeth. J. Esthet. Restor. Dent. 2004, 16, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Bhopatkar, J.; Ikhar, A.; Chandak, M.; Mankar, N.; Sedani, S. Composite pre-heating: A novel approach in restorative dentistry. Cureus 2022, 14, e27151. [Google Scholar] [CrossRef]
- Darabi, F.; Tayefeh-Davalloo, R.; Tavangar, S.M.; Naser-Alavi, F.; Boorboo-Shirazi, M. The effect of composite resin preheating on marginal adaptation of class II restorations. J. Clin. Exp. Dent. 2020, 12, e682–e687. [Google Scholar] [CrossRef]
- Raposo, C.C.; Nery, L.M.S.; Carvalho, E.M.; Ferreira, P.V.C.; Ardenghi, D.M.; Bauer, J.; Lima, D.M. Effect of preheating on the physicochemical properties and bond strength of composite resins utilized as dental cements: An in vitro study. J. Prosthet. Dent. 2023, 129, 229.E1–229.E7. [Google Scholar] [CrossRef]
- Lousan do Nascimento Poubel, D.; Zanon, A.E.G.; Almeida, J.C.F.; de Lucas Rezende, L.V.M.; Garcia, F.C.P. Composite resin preheating techniques for cementation of indirect restorations. Int. J. Biomater. 2022, 2022, 5935668. [Google Scholar] [CrossRef]
- Gugelmin, B.P.; Miguel, L.C.M.; Filho, F.B.; Cunha, L.F.D.; Correr, G.M.; Gonzaga, C.C. Color stability of ceramic veneers luted with resin cements and pre-heated composites: 12 months follow-up. Braz. Dent. J. 2020, 31, 69–77. [Google Scholar] [CrossRef]
- Reboul, T.; Thai, H.A.H.; Cetik, S.; Atash, R. Comparison between shear forces applied on the overlay-dental tissue interface using different bonding techniques: An in vitro study. J. Indian Prosthodont. Soc. 2018, 18, 212–218. [Google Scholar] [CrossRef]
- Teyagirwa, P.F.; Aquin, C.; Kharouf, N.; Roman, T.; Senger, B.; Reitzer, F.; Etienne, O. Operator versus material influence on film thickness using adhesive resin cement or pre-heated resin composite. J. Esthet. Restor. Dent. 2023, 35, 517–524. [Google Scholar] [CrossRef]
- El-Deeb, H.A.; El-Aziz, S.A.; Mobarak, E.H. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin. J. Adv. Res. 2015, 6, 471–478. [Google Scholar] [CrossRef]
- O’cOnnor, C.; Gavriil, D. Predictable bonding of adhesive indirect restorations: Factors for success. Br. Dent. J. 2021, 231, 287–293. [Google Scholar] [CrossRef]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Oderich, E.; Boff, L.L.; Cardoso, A.C.; Belser, U.C. Fatigue resistance and failure mode of cad/cam composite resin implant abutments restored with type III composite resin and porcelain veneers. Clin. Oral Implant. Res. 2011, 22, 1275–1281. [Google Scholar] [CrossRef]
- Magne, P.; Razaghy, M.; Carvalho, M.A.; Soares, L.M. Luting of inlays, onlays, and overlays with preheated restorative composite resin does not prevent seating accuracy. Int. J. Esthet. Dent. 2018, 13, 318–332. [Google Scholar] [PubMed]
- Oderich, E.; Boff, L.L.; Cardoso, A.C.; Magne, P. Fatigue resistance and failure mode of adhesively restored custom implant zirconia abutments. Clin. Oral Implant. Res. 2012, 23, 1360–1368. [Google Scholar] [CrossRef]
- Rickman, L.J.; Padipatvuthikul, P.; Chee, B. Clinical applications of preheated hybrid resin composite. Br. Dent. J. 2011, 211, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, L.H.; Maia, H.P.; Baratieri, L.N.; Magne, P. Novel-design ultra-thin cad/cam composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J. Prosthet. Dent. 2011, 105, 217–226. [Google Scholar] [CrossRef]
- Soares, L.M.; Razaghy, M.; Magne, P. Optimization of large mod restorations: Composite resin inlays vs. Short fiber-reinforced direct restorations. Dent. Mater. 2018, 34, 587–597. [Google Scholar] [CrossRef]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In vitro fatigue resistance of cad/cam composite resin and ceramic posterior occlusal veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- Magne, P.; Knezevic, A. Influence of overlay restorative materials and load cusps on the fatigue resistance of endodontically treated molars. Quintessence Int. 2009, 40, 729–737. [Google Scholar] [PubMed]
- Goulart, M.; Veleda, B.B.; Damin, D.; Ambrosano, G.M.B.; de Souza, F.H.C.; Erhardt, M.C.G. Preheated composite resin used as a luting agent for indirect restorations: Effects on bond strength and resin-dentin interfaces. Int. J. Esthet. Dent. 2018, 13, 86–97. [Google Scholar] [PubMed]
- Mounajjed, R.; Salinas, T.J.; Ingr, T.; Azar, B. Effect of different resin luting cements on the marginal fit of lithium disilicate pressed crowns. J. Prosthet. Dent. 2018, 119, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Olivares, J.M.; Hidalgo, A.; Pavez, J.P.; Benadof, D.; Irribarra, R. Functional and esthetic restorative treatment with preheated resins in a patient with ectodermic dysplasia: A clinical report. J. Prosthet. Dent. 2018, 119, 526–529. [Google Scholar] [CrossRef]
- Lopes, L.C.P.; Terada, R.S.S.; Tsuzuki, F.M.; Giannini, M.; Hirata, R. Heating and preheating of dental restorative materials—A systematic review. Clin. Oral Investig. 2020, 24, 4225–4235. [Google Scholar] [CrossRef] [PubMed]
- Sokołowska, J.; Masre, N.; Domarecka, M.; Sokołowski, J. Influence of polymerization temperature on durability of dental composites. Dent. Med. Probl. 2010, 47, 153–159. [Google Scholar]
- Yang, J. Temperature Effects on Pre-Cure and Post-Cure Properties of Dental Resin Composites. Ph.D. Thesis, University of Manchester, Manchester, UK, 2021. [Google Scholar]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef]
- da Costa, J.B.; Hilton, T.J.; Swift, E.J., Jr. Critical appraisal: Preheating composites. J. Esthet. Restor. Dent. 2011, 23, 269–275. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to preheating composites. J. Esthet. Restor. Dent. 2006, 18, 340–350. [Google Scholar] [CrossRef]
- Mei, M.L.; Chen, Y.M.; Li, H.; Chu, C.H. Influence of the indirect restoration design on the fracture resistance: A finite element study. Biomed. Eng. Online 2016, 15, 3. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Etoeharnowo, L.; Tadros, M.; Feilzer, A.J.; Werner, A.; Kleverlaan, C.J.; Piva, A.M.O.D. The influence of pre-heating the restoration and luting agent on the flexural strength of indirect ceramic and composite restorations. Biomater. Investig. Dent. 2023, 10, 2279066. [Google Scholar] [CrossRef]
- Froes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Lovell, L.G.; Newman, S.M.; Bowman, C.N. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J. Dent. Res. 1999, 78, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- D’Amario, M.; De Angelis, F.; Vadini, M.; Marchili, N.; Mummolo, S.; D’Arcangelo, C. Influence of a repeated preheating procedure on mechanical properties of three resin composites. Oper. Dent. 2015, 40, 181–189. [Google Scholar] [CrossRef]
- Kramer, M.R.; Edelhoff, D.; Stawarczyk, B. Flexural strength of preheated resin composites and bonding properties to glass-ceramic and dentin. Materials 2016, 9, 83. [Google Scholar] [CrossRef]
- Kimyai, S.; Mashayekhi, Z.; Mohammadi, N.; Bahari, M.; Kahnamouei, M.A.; Chaharom, M.E.E. Comparison of the effect of preheating on the flexural strength of giomer and nanohybrid composite resin. J. Dent. Res. Dent. Clin. Dent. Prospect. 2022, 16, 159–163. [Google Scholar] [CrossRef]
- Meenakumari, C.; Bhat, K.M.; Bansal, R.; Singh, N. Evaluation of mechanical properties of newer nanoposterior restorative resin composites: An in vitro study. Contemp. Clin. Dent. 2018, 9, S142–S146. [Google Scholar] [CrossRef] [PubMed]
- Basheer, R.R.; Hasanain, F.A.; Abuelenain, D.A. Evaluating flexure properties, hardness, roughness and microleakage of high-strength injectable dental composite: An in vitro study. BMC Oral Health 2024, 24, 546. [Google Scholar] [CrossRef]
- Banditmahakun, S.; Kuphausuk, W.; Kanchanavasita, W.; Kuphasuk, C. The effect of base materials with different elastic moduli on the fracture loads of machinable ceramic inlays. Oper. Dent. 2006, 31, 180–187. [Google Scholar] [CrossRef]
- Banks, R.G. Conservative posterior ceramic restorations: A literature review. J. Prosthet. Dent. 1990, 63, 619–626. [Google Scholar] [CrossRef]
- Moscovich, H.; Roeters, F.J.; Verdonschot, N.; de Kanter, R.J.; Creugers, N.H. Effect of composite basing on the resistance to bulk fracture of industrial porcelain inlays. J. Dent. 1998, 26, 183–189. [Google Scholar] [CrossRef]
- Lee, S.K.; Wilson, P.R. Fracture strength of all-ceramic crowns with varying core elastic moduli. Aust. Dent. J. 2000, 45, 103–107. Available online: https://www.ncbi.nlm.nih.gov/pubmed/10925505 (accessed on 1 May 2025). [PubMed]
- Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Mechanical properties of resin cements with different activation modes. J. Oral Rehabil. 2002, 29, 257–262. [Google Scholar] [CrossRef]
- de la Macorra, J.C.; Pradíes, G. Conventional and adhesive luting cements. Clin. Oral Investig. 2002, 6, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Sharafeddin, F.; Motamedi, M.; Fattah, Z. Effect of preheating and precooling on the flexural strength and modulus of elasticity of nanohybrid and silorane-based composite. J. Dent. 2015, 16 (Suppl. S3), 224–229. [Google Scholar] [PubMed]
- D’Amario, M.; Pacioni, S.; Capogreco, M.; Gatto, R.; Baldi, M. Effect of repeated preheating cycles on flexural strength of resin composites. Oper. Dent. 2013, 38, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Jafari-Navimipour, E.; Kimyai, S.; Ajami, A.A.; Bahari, M.; Ansarin, M.; Ansarin, M. Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites. J. Clin. Exp. Dent. 2016, 8, e373–e378. [Google Scholar] [CrossRef]
- Nada, K.; El-Mowafy, O. Effect of precuring warming on mechanical properties of restorative composites. Int. J. Dent. 2011, 2011, 536212. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e51–e59. [Google Scholar] [CrossRef]
- Kim, A.R.; Jeon, Y.C.; Jeong, C.M.; Yun, M.J.; Choi, J.W.; Kwon, Y.H.; Huh, J.B. Effect of activation modes on the compressive strength, diametral tensile strength and microhardness of dual-cured self-adhesive resin cements. Dent. Mater. J. 2016, 35, 298–308. [Google Scholar] [CrossRef]
- Lucey, S.; Lynch, C.D.; Ray, N.J.; Burke, F.M.; Hannigan, A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J. Oral Rehabil. 2010, 37, 278–282. [Google Scholar] [CrossRef]
- Munoz, C.A.; Bond, P.R.; Sy-Munoz, J.; Tan, D.; Peterson, J. Effect of pre-heating on depth of cure and surface hardness of light-polymerized resin composites. Am. J. Dent. 2008, 21, 215–222. [Google Scholar] [PubMed]
- Bausch, J.R.; de Lange, C.; Davidson, C.L. The influence of temperature on some physical properties of dental composites. J. Oral Rehabil. 1981, 8, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, N.; Reddy, Y.P.; Kavitha, S.; Narayanan, L.L. Degree of conversion and residual stress of preheated and room-temperature composites. Indian J. Dent. Res. 2007, 18, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Eliades, G.C.; Vougiouklakis, G.J.; Caputo, A.A. Degree of double bond conversion in light-cured composites. Dent. Mater. 1987, 3, 19–25. [Google Scholar] [CrossRef]
- Bhopatkar, J.; Ikhar, A.; Chandak, M.; Patel, A.; Agrawal, P. Examining the impact of preheating on the fracture toughness and microhardness of composite resin: A systematic review. Cureus 2023, 15, e47117. [Google Scholar] [CrossRef]
- de Kok, P.; Pereira, G.K.R.; Fraga, S.; de Jager, N.; Venturini, A.B.; Kleverlaan, C.J. The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dent. Mater. 2017, 33, 1416–1425. [Google Scholar] [CrossRef]
- Grangeiro, M.T.V.; Rodrigues, C.D.S.; Rossi, N.R.; Souza, K.B.; Melo, R.M.; Bottino, M.A. Preheated composite as an alternative for bonding feldspathic and hybrid ceramics: A microshear bond strength study. J. Adhes. Dent. 2023, 25, 159–166. [Google Scholar] [CrossRef]
- Maghfira, H.; Hidayat, R.; Amalina, R. Comparison of shear strength cementation of preheated resin composite and resin cement on indirect lithium disilicate. J. Medali 2022, 4, 110. [Google Scholar] [CrossRef]
- Knight, J.S.; Fraughn, R.; Norrington, D. Effect of temperature on the flow properties of resin composite. Gen. Dent. 2006, 54, 14–16. [Google Scholar] [PubMed]
- Davis, M.J.; Bond, D.A. The importance of failure mode identification in adhesive bonded aircraft structures and repairs. In Proceedings of the 12th International Conference on Composite Materials, Paris, France, 5–9 July 1999. Presented at 2008. [Google Scholar]
Material | Composition | Manufacturer |
---|---|---|
FiltekTM Z350XT nanocomposite | Matrix: Bis-GMA, UDMA, and Bis-EMA Filler: Silica, zirconia nanoparticles (4–20 nm) (72.5% wt, 55.9% vol) | 3M ESPE, Germany |
Proclinic Expert Nanohybrid composite | Matrix: Multifunctional methacrylic ester Filler: Inorganic filler (40 nm–1.5 µm) (77.5% wt, 61% vol) | SDI LIMITED, Australia |
RelyX™ U200 Automix Self-adhesive resin cement | Base: Methacrylate monomers containing phosphoric acid groups, methacrylate monomers, silanated fillers, initiator components, stabilizer, and rheological additives Catalyst: Methacrylate monomers, alkaline (basic) fillers, silanated fillers, initiator components, stabilizer, pigments, and rheological additives | 3M ESPE, Germany |
Monobond N Universal ceramic primer | Alcohol solution of silane methacrylate, phosphoric acid methacrylate, and sulfide methacrylate. | Ivoclar Vivadent, Liechtenstein |
IPS e. max CAD Lithium disilicate glass ceramic | Lithium meta-silicate crystals with approximately 40% crystals by volume, Li2O, K2O, MgO, AL2O3, and P2O2 | Ivoclar Vivadent, Liechtenstein |
Group | Flexural Strength (MPa) Mean ± SD | Flexural Modulus (GPa) Mean ± SD | Vickers Microhardness (VHN) Mean ± SD | Shear Bond Strength (MPa) Mean ± SD |
---|---|---|---|---|
Z350 | 71.47 ± 22.98 B | 118.10 ± 11.3 A | 136.84 ± 11.52 A | 20.75 ± 5.6 A |
RelyX U200 | 106.22 ± 14.23 A | 110.88 ±13.44 A | 115.25 ± 17.15 B | 15.4 ± 3.46 B |
Proclinic | 85.76 ± 12.75 B | 83.72 ± 9.3 B | 100.83 ± 12.69 C | 6.76 ± 1.44 C |
One-way ANOVA p-value | 0.0002 * | <0.0001 * | <0.0001 * | <0.0001 * |
Materials | Failures | Adhesive | Cohesive | Mixed | p-Value from Chi-Square Test within the Same Cement | p-Value from Chi-Square Test Between Cements |
---|---|---|---|---|---|---|
Proclinic | Count | 1 | 4 | 10 | <0.000 | 0.162 |
% | 6.67% | 26.67% | 66.67% | |||
RelyX U200 | Count | 1 | 1 | 13 | <0.000 | |
% | 6.67% | 6.67% | 86.67% | |||
Z350 | Count | 4 | 1 | 10 | <0.000 | |
% | 26.67% | 6.67% | 66.67% | |||
Total | Count | 6 | 6 | 33 | - | - |
% | 13.33% | 13.33% | 73.33% | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajjaj, M.S.; Alhowirini, L.F.; Alghamdi, R.S.; Merdad, Y.M.; Filemban, H.K.; Bawazir, M.; Alothman, K.A.; Turkestani, N.A.; Alzahrani, S.J. Effects of Preheating on the Mechanical Properties of Dental Composites. Crystals 2025, 15, 632. https://doi.org/10.3390/cryst15070632
Hajjaj MS, Alhowirini LF, Alghamdi RS, Merdad YM, Filemban HK, Bawazir M, Alothman KA, Turkestani NA, Alzahrani SJ. Effects of Preheating on the Mechanical Properties of Dental Composites. Crystals. 2025; 15(7):632. https://doi.org/10.3390/cryst15070632
Chicago/Turabian StyleHajjaj, Maher S., Lama F. Alhowirini, Raneem S. Alghamdi, Yasser M. Merdad, Hanan K. Filemban, Marwa Bawazir, Khawlah A. Alothman, Najla Al Turkestani, and Saeed J. Alzahrani. 2025. "Effects of Preheating on the Mechanical Properties of Dental Composites" Crystals 15, no. 7: 632. https://doi.org/10.3390/cryst15070632
APA StyleHajjaj, M. S., Alhowirini, L. F., Alghamdi, R. S., Merdad, Y. M., Filemban, H. K., Bawazir, M., Alothman, K. A., Turkestani, N. A., & Alzahrani, S. J. (2025). Effects of Preheating on the Mechanical Properties of Dental Composites. Crystals, 15(7), 632. https://doi.org/10.3390/cryst15070632