Diamond-like Cage Motifs in {Cu6(StBu)4} Complexes with Pyridines
Abstract
1. Introduction
2. Materials and Methods
2.1. General Information
2.2. SCXRD
2.3. DFT Calculations
2.4. Preparation of “{Cux(StBu)y}” Stock Solution
2.5. Synthesis of [Cu6(StBu)4(2-Me-py)5(CH3CN)(NO3)](NO3) (1)
2.6. Synthesis of [Cu6(StBu)4(Me3py)4(NO3)2]·3.5CH3CN (2a) and [Cu6(StBu)4(Me3py)5(NO3)](NO3)·5CH3CN (2b)
2.7. Synthesis of (NHEt3)[Cu6(StBu)4(CH3CN)3(NO3)3]·H2O (3)
2.8. Synthesis of [Cu6(StBu)4(2-Br-py)4(NO3)2]·2-Br-py (4)
2.9. Synthesis of [Cu6(StBu)4(3-Br-py)6][Cu6(StBu)4(CH3CN)6](NO3)4·9CH3CN (5)
2.10. Synthesis of [Cu6(StBu)4(3-Cl-py)6][Cu6(StBu)4(CH3CN)6](NO3)4·5CH3CN (6)
3. Results and Discussion
3.1. Synthesis and Crystal Structure
3.2. Quantum Chemical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCXRD | Single Crystal X-ray Diffraction |
QTAIM | Quantum Theory of Atoms in Molecules |
NCI | Noncovalent Interactions |
RDG | Reduced Density Gradient |
RCP | Ring Critical Point |
CCP | Cage Critical Point |
References
- Wang, Z.; Gupta, R.K.; Luo, G.; Sun, D. Recent Progress in Inorganic Anions Templated Silver Nanoclusters: Synthesis, Structures and Properties. Chem. Rec. 2020, 20, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Baghdasaryan, A.; Bürgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340. [Google Scholar] [CrossRef]
- Liu, L.-J.; Zhang, M.-M.; Deng, Z.; Yan, L.-L.; Lin, Y.; Phillips, D.L.; Yam, V.W.-W.; He, J. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer. Nat. Commun. 2024, 15, 4688. [Google Scholar] [CrossRef]
- Sagadevan, A.; Murugesan, K.; Bakr, O.M.; Rueping, M. Copper nanoclusters: Emerging photoredox catalysts for organic bond formations. Chem. Commun. 2024, 60, 13858–13866. [Google Scholar] [CrossRef]
- Brocha Silalahi, R.P.; Jo, Y.; Liao, J.; Chiu, T.; Park, E.; Choi, W.; Liang, H.; Kahlal, S.; Saillard, J.; Lee, D.; et al. Hydride-containing 2-Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, 62, e202301272. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, M.; Palladino, P.; Scarano, S.; Minunni, M. Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview. Sens. Actuators Rep. 2022, 4, 100108. [Google Scholar] [CrossRef]
- Skvortsova, S.V.; Verkhov, F.K.; Nikolaenkova, E.B.; Rakhmanova, M.I.; Kokina, T.E.; Sukhikh, T.S.; Shekhovtsov, N.A.; Bushuev, M.B. Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(i) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol. Dalton Trans. 2025, 54, 9000–9015. [Google Scholar] [CrossRef]
- Liao, P.; Shi, D.; Liao, J.; Liu, C.W.; Artem’ev, A.V.; Kuimov, V.A.; Gusarova, N.K.; Trofimov, B.A. Facile Self-Assembly Synthesis and Characterization of Diselenophosphinato Octanuclear Cu I Clusters Inscribed in a Twelve-Vertex Selenium Polyhedron. Eur. J. Inorg. Chem. 2012, 2012, 4921–4929. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Liu, C.W. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem. Commun. 2023, 59, 7182–7195. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Doronina, E.P.; Rakhmanova, M.I.; Hei, X.; Stass, D.V.; Tarasova, O.A.; Bagryanskaya, I.Y.; Samsonenko, D.G.; Novikov, A.S.; Nedolya, N.A.; et al. A family of CuI-based 1D polymers showing colorful short-lived TADF and phosphorescence induced by photo-and X-ray irradiation. Dalton Trans. 2023, 52, 4017–4027. [Google Scholar] [CrossRef]
- Davydova, M.P.; Berezin, A.S.; Samsonenko, D.G.; Artem’ev, A.V. Cu(I) complexes designed on 2-pyrimidylphosphine and 1,4-dicyanobenzene: Synthesis and thermally activated delayed fluorescence. Inorg. Chim. Acta 2021, 521, 120347. [Google Scholar] [CrossRef]
- Baranov, A.Y.; Rakhmanova, M.I.; Hei, X.; Samsonenko, D.G.; Stass, D.V.; Bagryanskaya, I.Y.; Ryzhikov, M.R.; Fedin, V.P.; Li, J.; Artem’ev, A.V. A new subclass of copper(i) hybrid emitters showing TADF with near-unity quantum yields and a strong solvatochromic effect. Chem. Commun. 2023, 59, 2923–2926. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lin, Y.-F.; Nain, A.; Huang, Y.-F.; Chang, H.-T. A critical review of copper nanoclusters for monitoring of water quality. Sens. Actuators Rep. 2021, 3, 100026. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, Z.; Zhao, Y.; Yu, M.; Jiang, F.; Chen, L.; Hong, M. A copper(I) thiolate coordination polymer with thermochromic and mechanochromic luminescence. Inorg. Chem. Commun. 2022, 140, 109432. [Google Scholar] [CrossRef]
- Veselska, O.; Podbevšek, D.; Ledoux, G.; Fateeva, A.; Demessence, A. Intrinsic triple-emitting 2D copper thiolate coordination polymer as a ratiometric thermometer working over 400 K range. Chem. Commun. 2017, 53, 12225–12228. [Google Scholar] [CrossRef]
- Liang, X.-Q.; Gupta, R.K.; Li, Y.-W.; Ma, H.-Y.; Gao, L.-N.; Tung, C.-H.; Sun, D. Structural Diversity of Copper(I) Cluster-Based Coordination Polymers with Pyrazine-2-thiol Ligand. Inorg. Chem. 2020, 59, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Y.; Zhang, L.; He, W.-M.; Yang, L.; Zhang, C.; Wang, Z.-Y.; Zhang, R.; Chen, J.-H.; Wang, S.; Zang, S.-Q.; et al. High-performance primary explosives derived from copper thiolate cluster-assembled materials for micro-initiating device. Chem. Eng. J. 2020, 389, 124455. [Google Scholar] [CrossRef]
- Liu, C.W.; Staples, R.J.; Fackler, J.P. Copper(I) 1,1-dithiolate cluster transformations. Synthesis of [Bu4N]6[Cu6(S,i-MNT)6], i-MNT=[S2CC(CN)2]−, from [Bu4N]4[Cu8(i-MNT)6] with sulfur. Reaction of the cyclic hexanuclear complex with phosphine to give the tetrahedral [Bu4N]4[Cu4(i-MNT)4] which. Coord. Chem. Rev. 1998, 174, 147–177. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Lam, C.-H.; Fung, W.K.-M.; Cheung, K.-K. Syntheses, Photophysics, and Photochemistry of Trinuclear Copper(I) Thiolate and Hexanuclear Copper(I) Selenolate Complexes: X-ray Crystal Structures of [Cu6(μ-dppm)4(μ3-SePh)4](BF4)2 and [Cu6{μ-(Ph2P)2NH}4(μ3-SePh)4](BF4)2. Inorg. Chem. 2001, 40, 3435–3442. [Google Scholar] [CrossRef]
- Baghdasaryan, A.; Besnard, C.; Lawson Daku, L.M.; Delgado, T.; Burgi, T. Thiolato Protected Copper Sulfide Cluster with the Tentative Composition Cu74S15(2-PET)45. Inorg. Chem. 2020, 59, 2200–2208. [Google Scholar] [CrossRef]
- Bühler, R.; Wolf, R.M.; Gemel, C.; Stephan, J.; Deger, S.N.; Kahlal, S.; Fischer, R.A.; Saillard, J.-Y. Cuprophilic Interactions in Polymeric [Cu10O2(Mes)6]n. Inorg. Chem. 2024, 63, 17617–17625. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Filippova, E.A.; Petrov, P.A.; Sukhikh, T.S.; Sokolov, M.N.; Abramov, P.A. Crystal structure of [Cu3(StBu)3]n. Zhurnal Struct. Khimii 2025, 66, 147696. [Google Scholar]
- Volchek, V.V.; Berezin, A.S.; Sokolov, M.N.; Abramov, P.A. Stabilization of {Ag20(StBu)10} and {Ag19(StBu)10} Toroidal Complexes in DMSO: HPLC-ICP-AES, PL, and Structural Studies. Inorganics 2022, 10, 225. [Google Scholar] [CrossRef]
- Maiti, B.K.; Pal, K.; Sarkar, S. Flexible Cu I –Thiolate Clusters with Relevance to Metallothioneins. Eur. J. Inorg. Chem. 2007, 2007, 5548–5555. [Google Scholar] [CrossRef]
- Dance, I.G.; Guerney, P.J.; Rae, A.D.; Scudder, M.L. Planar bridging thiolate in (Ph3P)2Cu(μ-SPh)2Cu(PPh3)2. Inorg. Chem. 1983, 22, 2883–2887. [Google Scholar] [CrossRef]
- Gao, X.; He, S.; Zhang, C.; Du, C.; Chen, X.; Xing, W.; Chen, S.; Clayborne, A.; Chen, W. Single Crystal Sub-Nanometer Sized Cu6(SR)6 Clusters: Structure, Photophysical Properties, and Electrochemical Sensing. Adv. Sci. 2016, 3, 1600126. [Google Scholar] [CrossRef] [PubMed]
- Morozov, I.V.; Serezhkin, V.N.; Troyanov, S.I. Modes of coordination and stereochemistry of the NO3− anions in inorganic nitrates. Russ. Chem. Bull. 2008, 57, 439–450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhikh, T.S.; Sokolov, M.N.; Abramov, P.A. Diamond-like Cage Motifs in {Cu6(StBu)4} Complexes with Pyridines. Crystals 2025, 15, 607. https://doi.org/10.3390/cryst15070607
Sukhikh TS, Sokolov MN, Abramov PA. Diamond-like Cage Motifs in {Cu6(StBu)4} Complexes with Pyridines. Crystals. 2025; 15(7):607. https://doi.org/10.3390/cryst15070607
Chicago/Turabian StyleSukhikh, Taisiya S., Maxim N. Sokolov, and Pavel A. Abramov. 2025. "Diamond-like Cage Motifs in {Cu6(StBu)4} Complexes with Pyridines" Crystals 15, no. 7: 607. https://doi.org/10.3390/cryst15070607
APA StyleSukhikh, T. S., Sokolov, M. N., & Abramov, P. A. (2025). Diamond-like Cage Motifs in {Cu6(StBu)4} Complexes with Pyridines. Crystals, 15(7), 607. https://doi.org/10.3390/cryst15070607