Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
3. Results and Discussion
3.1. Structure and Chemical Composition of NIR-Reflective Films
3.2. Fabrication of the Optimal LH CLC and RH CLC Layers
3.3. Optimization of the Compositional Ratio and Fabrication Conditions of the CLC Mixture
3.4. NIR Reflection Performance of the Stacked CLC Layers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Shi, Y.; Li, R.; Wang, P. Spectrally Selective Smart Window with High Near-Infrared Light Shielding and Controllable Visible Light Transmittance. ACS Appl. Mater. Interfaces 2018, 10, 39819–39827. [Google Scholar] [CrossRef]
- Dang, S.; Wang, X.; Ye, H. An Ultrathin Transparent Radiative Cooling Photonic Structure with a High NIR Reflection. Adv. Mater. Interfaces 2022, 9, 2201050. [Google Scholar] [CrossRef]
- Li, W.; Lin, C.; Ma, W.; Li, Y.; Chu, F.; Huang, B.; Yao, S. Transparent Selective Photothermal Coatings for Antifogging Applications. Cell Rep. Phys. Sci. 2021, 2, 100435. [Google Scholar] [CrossRef]
- Herguedas, N.; Carretero, E. Evaluation of Low-Emissivity Coatings with Single, Double, and Triple Silver Layers. Sol. Energy Mater. Sol. Cells 2023, 263, 112592. [Google Scholar] [CrossRef]
- Addonizio, M.L.; Ferrara, M.; Castaldo, A.; Antonaia, A. Air-Stable Low-Emissive AlN-Ag Based Coatings for Energy-Efficient Retrofitting of Existing Windows. Energy Build. 2021, 250, 111259. [Google Scholar] [CrossRef]
- Capuzzo, G.; Kysylychyn, D.; Adhikari, R.; Li, T.; Faina, B.; Tarazaga Martín-Luengo, A.; Bonanni, A. All-Nitride AlxGa1−xN:Mn/GaN Distributed Bragg Reflectors for the near-Infrared. Sci. Rep. 2017, 7, 42697. [Google Scholar] [CrossRef]
- Yan, X.; Wang, J.; Zhang, W.; Liu, Y.; Luo, D. Gradient Polarization Volume Grating with Wide Angular Bandwidth for Augmented Reality. Opt. Express 2023, 31, 35282. [Google Scholar] [CrossRef]
- Dalapati, G.K.; Masudy-Panah, S.; Chua, S.T.; Sharma, M.; Wong, T.I.; Tan, H.R.; Chi, D. Color Tunable Low Cost Transparent Heat Reflector Using Copper and Titanium Oxide for Energy Saving Application. Sci. Rep. 2016, 6, 20182. [Google Scholar] [CrossRef]
- Yu, H.; Xu, G.; Shen, X.; Yan, X.; Cheng, C. Low Infrared Emissivity of Polyurethane/Cu Composite Coatings. Appl. Surf. Sci. 2009, 255, 6077–6081. [Google Scholar] [CrossRef]
- Wurm, J.; Fujisawa-Phillips, S.T.; Rasskazov, I.L. Optimal Design of Low-Emissivity Coatings. Sol. Energy Mater. Sol. Cells 2025, 280, 113267. [Google Scholar] [CrossRef]
- Gryga, M.; Ciprian, D.; Hlubina, P. Distributed Bragg Reflectors Employed in Sensors and Filters Based on Cavity-Mode Spectral-Domain Resonances. Sensors 2022, 22, 3627. [Google Scholar] [CrossRef]
- Mansour, S.A.; Farha, A.H. A Review of Near-Infrared Reflective Nanopigments: Aesthetic and Cooling Properties. Crystals 2025, 15, 271. [Google Scholar] [CrossRef]
- Ahmed, U.; Khan, Y.; Ehsan, M.; Amirzada, M.; Ullah, N.; Khatri, A.; Ur Rehman, A.; Butt, M. Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application. Crystals 2022, 12, 409. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, L.; Cheng, N.; Andrew, T. ITO-Free Transparent Organic Solar Cell with Distributed Bragg Reflector for Solar Harvesting Windows. Energies 2017, 10, 707. [Google Scholar] [CrossRef]
- Ahn, S.-C.; Lee, B.-T.; An, W.-C.; Kim, D.-K.; Jang, I.-K.; So, J.-S.; Lee, H.-J. Optimum Conditions of the Distributed Bragg Reflector in 850-Nm GaAs Infrared Light-Emitting Diodes. J. Korean Phys. Soc. 2016, 69, 91–95. [Google Scholar] [CrossRef]
- Liu, L.; Chang, H.; Xu, T.; Song, Y.; Zhang, C.; Hang, Z.H.; Hu, X. Achieving Low-Emissivity Materials with High Transmission for Broadband Radio-Frequency Signals. Sci. Rep. 2017, 7, 4840. [Google Scholar] [CrossRef]
- Shaaban, I.E.; Samra, A.S.; Muhammad, S.; Wageh, S. Design of Distributed Bragg Reflectors for Green Light-Emitting Devices Based on Quantum Dots as Emission Layer. Energies 2022, 15, 1237. [Google Scholar] [CrossRef]
- Wu, C.M.; Zhang, B.P.; Shang, J.Z.; Cai, L.E.; Zhang, J.Y.; Yu, J.Z.; Wang, Q.M. High-Reflectivity AlN/GaN Distributed Bragg Reflectors Grown on Sapphire Substrates by MOCVD. Semicond. Sci. Technol. 2011, 26, 055013. [Google Scholar] [CrossRef]
- Gao, B.; George, J.P.; Beeckman, J.; Neyts, K. Design, Fabrication and Characterization of a Distributed Bragg Reflector for Reducing the Étendue of a Wavelength Converting System. Opt. Express 2020, 28, 12837. [Google Scholar] [CrossRef]
- Kim, H.; Kaya, M.; Hajimirza, S. Broadband Solar Distributed Bragg Reflector Design Using Numerical Optimization. Sol. Energy 2021, 221, 384–392. [Google Scholar] [CrossRef]
- Prateek; Huang, T.; Uchiyama, T.; Jung, D.E.; Verrastro, L.D.; Yan, J.; Brandso, S.; Stewart, B.; Katsumata, R.; Nuguri, S.M.; et al. High-Efficiency Bragg Mirrors by Solution-Based and Roll-to-Roll Processing. Nano Lett. 2025, 25, 4713–4719. [Google Scholar] [CrossRef]
- Zhan, X.; Xu, F.; Zhou, Z.; Yan, Y.; Yao, J.; Zhao, Y.S. 3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. Adv. Mater. 2021, 33, 2104418. [Google Scholar] [CrossRef]
- Dinc, R.U.; Lub, J.; Kragt, A.J.J.; Schenning, A.P.H.J. An L-Isosorbide-Based Reactive Chiral Dopant with High Helical Twisting Power for Cholesteric Liquid Crystal Polymers Reflecting Left-Handed Circularly Polarized Light. Org. Chem. Front. 2024, 11, 7053–7058. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Ren, Y.; Han, R.; Song, H.; Huang, R.; Wang, X.; Zhang, L.; Cao, H.; Zou, C.; et al. Preparation of Highly Durable Reverse-Mode Polymer-Stabilized Liquid Crystal Films with Polymer Walls. ACS Appl. Mater. Interfaces 2023, 15, 2228–2236. [Google Scholar] [CrossRef]
- Lee, K.M.; Tondiglia, V.P.; McConney, M.E.; Natarajan, L.V.; Bunning, T.J.; White, T.J. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals. ACS Photonics 2014, 1, 1033–1041. [Google Scholar] [CrossRef]
- Broer, D.J.; Mol, G.N.; van Haaren, J.A.M.M.; Lub, J. Photo-Induced Diffusion in Polymerizing Chiral-Nematic Media. Adv. Mater. 1999, 11, 573–578. [Google Scholar] [CrossRef]
- Tamaoki, N.; Moriyama, M.; Matsuda, H. Cholesteric Solid Films Formed by Spin-Coating Solutions of Dicholesteryl Esters. Angew. Chem. Int. Ed. 2000, 39, 509–511. [Google Scholar] [CrossRef]
- Maeng, J.; Rihani, R.T.; Javed, M.; Rajput, J.S.; Kim, H.; Bouton, I.G.; Criss, T.A.; Pancrazio, J.J.; Black, B.J.; Ware, T.H. Liquid Crystal Elastomers as Substrates for 3D, Robust, Implantable Electronics. J. Mater. Chem. B 2020, 8, 6286–6295. [Google Scholar] [CrossRef]
- Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M. Chiral-Nematic Liquid Crystals as One Dimensional Photonic Materials in Optical Sensors. J. Mater. Chem. C 2014, 2, 6695–6705. [Google Scholar] [CrossRef]
- Li, S.-L.; Chen, Z.-Y.; Chen, P.; Hu, W.; Huang, C.; Li, S.-S.; Hu, X.; Lu, Y.-Q.; Chen, L.-J. Geometric Phase-Encoded Stimuli-Responsive Cholesteric Liquid Crystals for Visualizing Real-Time Remote Monitoring: Humidity Sensing as a Proof of Concept. Light Sci. Appl. 2024, 13, 27. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Du, C.; Liao, X.; Yang, Y.; Feng, W. Cholesteric Liquid Crystal Elastomer Coatings with Brilliant Structural Colors and Mechanochromic Response Fabricated by Spray Deposition. Adv. Funct. Mater. 2025, 35, 2412298. [Google Scholar] [CrossRef]
- Picot, O.T.; Dai, M.; Broer, D.J.; Peijs, T.; Bastiaansen, C.W.M. New Approach toward Reflective Films and Fibers Using Cholesteric Liquid-Crystal Coatings. ACS Appl. Mater. Interfaces 2013, 5, 7117–7121. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Lee, K.M.; White, T.J.; Jeong, K.-U. Cholesteric Liquid Crystal Paints: In Situ Photopolymerization of Helicoidally Stacked Multilayer Nanostructures for Flexible Broadband Mirrors. NPG Asia Mater. 2018, 10, 1061–1068. [Google Scholar] [CrossRef]
- Zhang, W.; Lub, J.; Schenning, A.P.H.J.; Zhou, G.; de Haan, L.T. Polymer Stabilized Cholesteric Liquid Crystal Siloxane for Temperature-Responsive Photonic Coatings. Int. J. Mol. Sci. 2020, 21, 1803. [Google Scholar] [CrossRef]
- Tondiglia, V.P.; Natarajan, L.V.; Bailey, C.A.; McConney, M.E.; Lee, K.M.; Bunning, T.J.; Zola, R.; Nemati, H.; Yang, D.-K.; White, T.J. Bandwidth Broadening Induced by Ionic Interactions in Polymer Stabilized Cholesteric Liquid Crystals. Opt. Mater. Express 2014, 4, 1465. [Google Scholar] [CrossRef]
- Belalia, M.; Mitov, M.; Bourgerette, C.; Krallafa, A.; Belhakem, M.; Bormann, D. Cholesteric Liquid Crystals with a Helical Pitch Gradient: Spatial Distribution of the Concentration of Chiral Groups by Raman Mapping in Relation with the Optical Response and the Microstructure. Phys. Rev. E 2006, 74, 051704. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Kriezis, E.E.; Mitov, M.; Binet, C. Theoretical and Experimental Optical Studies of Cholesteric Liquid Crystal Films with Thermally Induced Pitch Gradients. Phys. Rev. E 2006, 73, 061701. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Sun, W.; Liu, H.; Liu, X.; Liu, Y.; Yang, H. Dye Induced Great Enhancement of Broadband Reflection from Polymer Stabilized Cholesteric Liquid Crystals. Polym. Adv. Technol. 2012, 23, 143–148. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Han, R.; Li, H.; Cao, H.; Chen, Y.; Wang, D.; Yang, Z.; He, W. Preparation of Cholesteric Polymer Networks with Broadband Reflection Memory Effect. Liq. Cryst. 2022, 49, 153–161. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, P.; Zhong, T.; Zhao, Y.; Miao, Z.; He, Z.; Li, K.; Zhang, Y.; Zhao, Y.; Shen, W. Preparation of Chiral Polymer/Cholesteric Liquid Crystals Composite Films with Broadband Reflective Capability for Smart Windows and Thermal Management of Buildings. Opt. Mater. 2021, 121, 111611. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, X.; Liu, M.; Yin, D. Benzotriazole Ultraviolet Stabilizers in the Environment: A Review of Analytical Methods, Occurrence, and Human Health Impacts. TrAC Trends Anal. Chem. 2023, 166, 117170. [Google Scholar] [CrossRef]
- Fischer, C.; Leibold, E.; Göen, T. Identification of in Vitro Phase I Metabolites of Benzotriazole UV Stabilizer UV-327 Using HPLC Coupled with Mass Spectrometry. Toxicol. In Vitro 2020, 68, 104932. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; McCormick, A.V.; Francis, L.F. Depthwise Viscosity Gradients in UV-cured Epoxy Coatings. Macromol. Mater. Eng. 2013, 298, 145–152. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, X.; Xie, M.; Liu, Z.; Zhao, X.; Cao, H.; Wang, H.; Yang, Z.; Wang, D.; He, W. Flexible, Easy-to-Produce, Gradient Distributed Pitch Broadband Infrared Reflectors with Polymer-Stabilized Cholesteric Liquid Crystals. J. Mol. Liq. 2024, 408, 125369. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.; Yuan, X.; Hu, W.; Cao, H.; Yang, H.; Zhu, S. Broadband Reflection Characteristic of Polymer-Stabilised Cholesteric Liquid Crystal with Pitch Gradient Induced by a Hydrogen Bond. Liq. Cryst. 2010, 37, 1275–1280. [Google Scholar] [CrossRef]
- Rojas-Rodríguez, M.; Fiaschi, T.; Mannelli, M.; Mortati, L.; Celegato, F.; Wiersma, D.S.; Parmeggiani, C.; Martella, D. Cellular Contact Guidance on Liquid Crystalline Networks with Anisotropic Roughness. ACS Appl. Mater. Interfaces 2023, 15, 14122–14130. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Z.; Ji, X.; Zhang, F. Fabrication Mechanisms of Lignin Nanoparticles and Their Ultraviolet Protection Ability in PVA Composite Film. Polymers 2022, 14, 4196. [Google Scholar] [CrossRef]
- Hu, X.; Zeng, W.; Zhang, X.; Wang, K.; Liao, X.; Jiang, X.; Jiang, X.-F.; Jin, M.; Shui, L.; Zhou, G. Pitch Gradation by Ion-Dragging Effect in Polymer-Stabilized Cholesteric Liquid Crystal Reflector Device. Polymers 2020, 12, 96. [Google Scholar] [CrossRef]
- Choi, J.-H.; Hwang, H.S.; Jang, H.-B.; Kim, S.-U.; Park, H.-L. Flexible Phototransistors Integrated with Chiral Liquid Crystal Encapsulating Film for Improving Color Selectivity and Stability. ACS Appl. Electron. Mater. 2024, 6, 8094–8103. [Google Scholar] [CrossRef]
- Park, H.-L.; Jun, J.; Kim, M.-H.; Lee, S.-H. Introduction of Helical Photonic Crystal Insulator in Organic Phototransistor for Enhancing Selective Color Absorption. Org. Electron. 2022, 100, 106385. [Google Scholar] [CrossRef]
- Yang, C.-S.; Lin, C.-J.; Pan, R.-P.; Que, C.T.; Yamamoto, K.; Tani, M.; Pan, C.-L. The Complex Refractive Indices of the Liquid Crystal Mixture E7 in the Terahertz Frequency Range. J. Opt. Soc. Am. B 2010, 27, 1866. [Google Scholar] [CrossRef]
- Sathaye, K.S. Asymmetric Tunable Fabry-Perot Cavity Using Switchable Polymer Stabilized Cholesteric Liquid Crystal Optical Bragg Mirror. Opt. Eng. 2012, 51, 034001. [Google Scholar] [CrossRef]
- Phillips, A.T.; Chen, J.C.; McCracken, J.M.; White, T.J. Dynamic Infrared Reflective Filters Prepared from Cholesteric Liquid Crystalline Elastomers. ACS Appl. Opt. Mater. 2024, 2, 2559–2567. [Google Scholar] [CrossRef]
- Sol, J.A.H.P.; Timmermans, G.H.; van Breugel, A.J.; Schenning, A.P.H.J.; Debije, M.G. Multistate Luminescent Solar Concentrator “Smart” Windows. Adv. Energy Mater. 2018, 8, 1702922. [Google Scholar] [CrossRef]
- Duda, Ł.; Czajkowski, M.; Potaniec, B.; Vaňkátová, P. Helical Twisting Power and Compatibility in Twisted Nematic Phase of New Chiral Liquid Crystalline Dopants with Various Liquid Crystalline Matrices. Liq. Cryst. 2019, 46, 1769–1779. [Google Scholar] [CrossRef]
- Yoshida, J.; Tamura, S.; Hoshino, K.; Yuge, H.; Sato, H.; Yamazaki, A.; Yoneda, S.; Watanabe, G. Comprehensive Understanding of Host- and Guest-Dependent Helix Inversion in Chiral Nematic Liquid Crystals: Experimental and Molecular Dynamics Simulation Study. J. Phys. Chem. B 2018, 122, 10615–10626. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Fan, H.; Li, Y.; Liu, Y.; Luo, D. Low Threshold Polymerised Cholesteric Liquid Crystal Film Lasers with Red, Green and Blue Colour. Liq. Cryst. 2019, 46, 970–976. [Google Scholar] [CrossRef]
- Lub, J.; Broer, D.J.; Wegh, R.T.; Peeters, E.; Van Der Zande, B.M.I. Formation of Optical Films by Photo-Polymerisation of Liquid Crystalline Acrylates and Application of These Films in Liquid Crystal Display Technology. Mol. Cryst. Liq. Cryst. 2005, 429, 77–99. [Google Scholar] [CrossRef]
- Agez, G.; Mitov, M. Cholesteric Liquid Crystalline Materials with a Dual Circularly Polarized Light Reflection Band Fixed at Room Temperature. J. Phys. Chem. B 2011, 115, 6421–6426. [Google Scholar] [CrossRef]
- Choi, T.-H.; Do, S.-M.; Jeon, B.-G.; Shin, S.T.; Yoon, T.-H. Formation of Polymer Walls through the Phase Separation of a Liquid Crystal Mixture Induced by a Spatial Elastic Energy Difference. Sci. Rep. 2019, 9, 10288. [Google Scholar] [CrossRef]
- Zhan, X.; Luo, D.; Yang, K.-L. Multifunctional Sensors Based on Liquid Crystals Scaffolded in Nematic Polymer Networks. RSC Adv. 2021, 11, 38694–38702. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, K.; Cao, H.; Wu, X.; Wang, G.; Cheng, Z.; Wang, F.; Zhang, H.; Yang, H. Chiral Polymer Networks with a Broad Reflection Band Achieved with Varying Temperature. Polymer 2010, 51, 5990–5996. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, Y.; Gao, H.; Du, Z.; Zhang, H.; Luan, Y.; Wang, D.; Li, C. Preparation and Application of Broadband Reflective Polymer-Stabilised Cholesteric Liquid with Nanoscale Fibres. Liq. Cryst. 2023, 50, 2280–2294. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Han, R.; Li, H.; Cao, H.; Chen, Y.; Yang, Z.; Wang, D.; He, W. Self-Diffusion Method for Broadband Reflection in Polymer-Stabilized Cholesteric Liquid Crystal Films. Liq. Cryst. 2022, 49, 494–503. [Google Scholar] [CrossRef]
- Xia, X.; Peng, J.; Wan, Q.; Wang, X.; Fan, Z.; Zhao, J.; Li, F. Functionalized Ionic Liquid-Crystal Additive for Perovskite Solar Cells with High Efficiency and Excellent Moisture Stability. ACS Appl. Mater. Interfaces 2021, 13, 17677–17689. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Im, D.; Lee, S.E.; Lee, J.; Koo, M.; Park, S.Y.; Kim, S.; Yang, K.; Kim, S.J.; Lee, K.; et al. In Vivo Silicon-Based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers. ACS Nano 2013, 7, 4545–4553. [Google Scholar] [CrossRef]
Sample | E7 | RM257 | S811 | LC756 | UV-327 | DMPA |
---|---|---|---|---|---|---|
A1 | 73.5 | 15 | 10 | 1 | 0.5 | |
A2 | 68.5 | 20 | 10 | 1 | 0.5 | |
A3 | 63.5 | 25 | 10 | 1 | 0.5 | |
A4 | 58.5 | 30 | 10 | 1 | 0.5 | |
B1 | 81.5 | 15 | 2 | 1 | 0.5 | |
B2 | 76.5 | 20 | 2 | 1 | 0.5 | |
B3 | 71.5 | 25 | 2 | 1 | 0.5 | |
B4 | 66.5 | 30 | 2 | 1 | 0.5 | |
C1 | 59.5 | 30 | 10 | 0 | 0.5 | |
C2 | 58.5 | 30 | 10 | 1 | 0.5 | |
C3 | 57.5 | 30 | 10 | 2 | 0.5 | |
C4 | 56.5 | 30 | 10 | 3 | 0.5 | |
D1 | 67.5 | 30 | 2 | 0 | 0.5 | |
D2 | 66.5 | 30 | 2 | 1 | 0.5 | |
D3 | 65.5 | 30 | 2 | 2 | 0.5 | |
D4 | 64.5 | 30 | 2 | 3 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.S.; Lee, J.; Kang, B.; Kim, M.; Kim, D.; Kim, S.-U. Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients. Crystals 2025, 15, 597. https://doi.org/10.3390/cryst15070597
Hwang HS, Lee J, Kang B, Kim M, Kim D, Kim S-U. Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients. Crystals. 2025; 15(7):597. https://doi.org/10.3390/cryst15070597
Chicago/Turabian StyleHwang, Hyeon Seong, Jongsu Lee, Byungsoo Kang, Minhye Kim, Doyo Kim, and Se-Um Kim. 2025. "Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients" Crystals 15, no. 7: 597. https://doi.org/10.3390/cryst15070597
APA StyleHwang, H. S., Lee, J., Kang, B., Kim, M., Kim, D., & Kim, S.-U. (2025). Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients. Crystals, 15(7), 597. https://doi.org/10.3390/cryst15070597