Epitaxial Growth of BaBiO3 Thin Films on SrTiO3(001) and MgO(001) Substrates Using Molecular Beam Epitaxy: Controlling the Competition Between Crystal Orientations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiabrera, F.; Yun, S.; Li, Y.; Dahm, R.T.; Zhang, H.; Kirchert, C.K.R.; Christensen, D.V.; Trier, F.; Jespersen, T.S.; Pryds, N.; et al. Freestanding perovskite oxide films: Synthesis, challenges, and properties. Ann. Phys. 2022, 534, 2200084. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, Y.; Lee, S.A.; Choi, W.S.; Kang, K.T. Complex oxide thin films: A review on pulsed laser epitaxy growth. Curr. Appl. Phys. 2024, 68, 113–130. [Google Scholar] [CrossRef]
- Ye, X.; Wang, X.; Liu, Z.; Zhou, B.; Zhou, L.; Deng, H.; Long, Y. Emergent physical properties of perovskite-type oxides prepared under high pressure. Dalton Trans. 2022, 51, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Scholder, R.; Ganter, K.; Glaser, H.; Merz, G. Alkali and alkali earth bismuthates (V). Z. FüR Anorg. Und Allg. Chem. 1963, 319, 375–377. [Google Scholar] [CrossRef]
- Cox, D.; Sleight, A. Mixed-valent Ba2Bi3+Bi5+O6: Structure and properties vs temperature. Struct. Sci. 1979, 35, 1–10. [Google Scholar] [CrossRef]
- Vesto, R.; Choi, H.; Kim, K. Observation of bandgap closing in SrxBa1-xBiO3 films: Evidence toward topological order in BaBiO3. J. Appl. Phys. 2022, 132, 015102. [Google Scholar] [CrossRef]
- Ahmed, I.; Kortov, M.; Sergeant, S.; Nuytten, T.; Conrad, T.; De Gendt, S.; Merckling, C. Influence of thickness scaling on the electronic structure and optical properties of oxygen-deficient BaBiO3-δ thin films grown on SrTiO3-buffered Si (001) substrate. APL Mater. 2024, 12, 031105. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Efficient photocatalysis on BaBiO3 driven by visible light. J. Phys. Chem. C 2007, 111, 12779–12785. [Google Scholar] [CrossRef]
- Chouhan, A.S.; Athresh, E.; Ranjan, R.; Raghavan, S.; Avasthi, S. BaBiO3: A potential absorber for all-oxide photovoltaics. Mater. Lett. 2018, 210, 218–222. [Google Scholar] [CrossRef]
- Huerta-Flores, M.A.; Sánchez-Martínez, D.; Fernández-Romo, M.R.; Zarazúa-Morín, M.E.; Torres-Martínez, L.M. Visible-light-driven BaBiO3 perovskite photocatalyst: Effect of physicochemical properties on the photoactivity towards water splitting and the removal of rhodamine B from aqueous systems. J. Photochem. Photobiol. A Chem. 2019, 368, 70–77. [Google Scholar] [CrossRef]
- Khraisheh, M.M.; Khzandar, A.; Al-Ghouti, M.A. Visible light-driven metal-oxide photocatalytic CO2 conversion. Int. J. Energy Res. 2015, 39, 1142–1152. [Google Scholar] [CrossRef]
- Acero, G.; Moreno, H.; Ortega, P.; Ramirez, M.; Montes, M.; Moura, F.; Simões, A. Unveiling the polar properties on barium bismuthate perovskite thin films with distinct Ba/Bi ratios. J. Alloys Compd. 2022, 974, 172871. [Google Scholar] [CrossRef]
- Silhue, K.V.; Sahoo, S.C.; Thomas, K.J. Novel ferromagnetism and negative magnetoresistance in BaBiO3 nanoparticles. Appl. Mater. Today 2022, 27, 101427. [Google Scholar]
- Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. Stabilization of the perovskite phase in the Y–Bi–O system by using a BaBiO3 buffer layer. Phys. Status Solidi (RRL) Rapid Res. Lett. 2019, 13, 1800679. [Google Scholar] [CrossRef]
- Chambers, S.A. Epitaxial growth and properties of doped transition metal and complex oxide films. Adv. Mater. 2010, 22, 219–248. [Google Scholar] [CrossRef]
- Harris, D.T.; Campbell, N.; Uecker, R.; Brützam, M.; Schlom, D.G.; Levchenko, A.; Rzchowski, M.S.; Eom, C.B. Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb1-xBixO3 thin films. Phys. Rev. Mater. 2018, 2, 041801. [Google Scholar] [CrossRef]
- Griffitt, S.; Spaić, M.; Joe, J.; Anderson, Z.W.; Zhai, D.; Krogstad, M.J.; Osborn, R.; Pelc, D.; Greven, M. Local inversion-symmetry breaking in a bismuthate high-Tc superconductor. Nat. Commun. 2023, 14, 845. [Google Scholar] [CrossRef]
- Yan, B.; Jansen, M.; Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 2013, 9, 709–711. [Google Scholar] [CrossRef]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The property, preparation and application of topological insulators: A review. Mater. Today 2017, 10, 814. [Google Scholar] [CrossRef]
- Xu, N.; Xu, Y.; Zhu, J. Topological insulators for thermoelectrics. NPJ Quantum Mater. 2017, 2, 51. [Google Scholar] [CrossRef]
- Ni, X.; Yves, S.; Krasnok, A.; Alu, A. Topological metamaterials. Chem. Rev. 2023, 123, 7585–7654. [Google Scholar] [CrossRef]
- Bhatia, A.A.; Hautier, G.; Nilgianskul, T.; Miglio, A.; Sun, J.; Kim, H.J.; Kim, K.H.; Chen, S.; Rignanese, G.M.; Gonze, X.; et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 2016, 28, 30–34. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, Y.; Chen, J.; Wang, F.; Jeong, Y.; Pham, D.P.; Yi, J. Approaches to improve mobility and stability of IGZO TFTs: A brief review. Trans. Electr. Electron. Mater. 2024, 25, 371–379. [Google Scholar] [CrossRef]
- Nunn, K.; Kruitman, T.; Jalan, B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J. Mater. Res. 2021, 36, 1–19. [Google Scholar] [CrossRef]
- Brahlek, M.; Gupta, A.S.; Lapano, J.; Roth, J.; Zhang, H.T.; Zhang, L.; Haislmaier, R.; Engel-Herbert, R. Frontiers in the growth of complex oxide thin films: Past, present, and future of hybrid MBE. Adv. Funct. Mater. 2018, 28, 1702772. [Google Scholar] [CrossRef]
- Ahmed, I.; De Gendt, S.; Merckling, C. Self-regulating plasma-assisted growth of epitaxial BaBiO3 thin film on SrTiO3-buffered Si (001) substrate. J. Appl. Phys. 2022, 132, 225304. [Google Scholar] [CrossRef]
- Hellman, E.; Hartford, E.; Fleming, R. Molecular beam epitaxy of superconducting (Rb, Ba)BiO3. Appl. Phys. Lett. 1989, 55, 2120–2122. [Google Scholar] [CrossRef]
- Iyori, M.; Suzuki, S.; Yamano, K.; Suzuki, H.; Takahashi, K.; Yoshisada, Y. Preparation of BaBiO3 thin films using an oxygen radical beam source. J. Cryst. Growth 1995, 150, 1086–1089. [Google Scholar] [CrossRef]
- Makita, T.T.; Abe, H.A. Control of crystal orientation for BaBiO3 thin film on SrTiO3 (100) substrate using BaO buffer layer. Jpn. J. Appl. Phys. 1997, 36, L96. [Google Scholar] [CrossRef]
- Mijatovic, D.; Rijnders, G.; Hilgenkamp, H.; Blank, D.H.; MacManus-Driscoll, J. Growth studies of Ba1-xKxBiO3 thin films using pulsed-laser deposition. Phys. C Supercond. 2002, 372, 594–598. [Google Scholar]
- Muta, S.; Nishikawa, S.; Ichinose, A.; Sato, Y.; Arita, M.; Shimakawa, Y.; Mukaida, H. Growth and photo-response of c-axis-oriented BaBiO3 films on SrTiO3 (001) substrates. Thin Solid Films 2022, 749, 139167. [Google Scholar] [CrossRef]
- Tellekamp, M.B.; Shank, J.C.; Goorsky, M.S.; Doering, W.A. Molecular beam epitaxy growth of high crystalline-quality LiNbO3. J. Electron. Mater. 2016, 45, 6292–6299. [Google Scholar] [CrossRef]
- Springell, R.; Bright, E.L.; Chaney, D.A.; Harding, L.M.; Bell, C.; Ward, R.C.C.; Lander, G.H. A review of uranium-based thin films. Adv. Phys. 2022, 71, 87–165. [Google Scholar] [CrossRef]
- Dahiya, A.; Chuhadiya, S.; Nehra, S.P.; Dhaka, M.S.; Himanshu; Suthar, D.; Nehra, S.P.; Dhaka, M.S. Achieving phase stability in ZnSe thin films by thickness and annealing recipes for optical window applications. J. Mater. Sci. Mater. Electron. 2023, 34, 410. [Google Scholar] [CrossRef]
- Hao, M.H.; Van Thourhout, D.; Pantouvaki, M.; Meersschaut, J.; Conard, T.; Richard, O.; Bender, H.; Favia, P.; Vila, M.; Cid, R.; et al. Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers. Appl. Phys. Express 2017, 10, 065501. [Google Scholar]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Zapf, M.; Stübinger, M.; Jin, L.; Kamp, M.; Pfaff, F.; Lubk, A.; Büchner, B.; Sing, M.; Claessen, R. Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interfaces. Appl. Phys. Lett. 2018, 112, 141601. [Google Scholar] [CrossRef]
- Jin, L.; Zapf, M.; Stübinger, M.; Kamp, M.; Sing, M.; Claessen, R.; Jia, C.L. Atomic-scale interface structure in domain matching epitaxial BaBiO3 thin films grown on SrTiO3 substrates. Phys. Status Solidi (RRL) Rapid Res. Lett. 2020, 14, 2000054. [Google Scholar] [CrossRef]
- Egitis, R.I.; Jia, R. Review of systematic tendencies in (001),(011) and (111) surfaces using B3PW and B3LYP computations of BaTiO3, CaTiO3, PbTiO3, SrTiO3, BaZrO3, CaZrO3, PbZrO3 and SrZrO3 perovskites. Materials 2023, 16, 7623. [Google Scholar] [CrossRef]
- Zhong, M.; Zeng, W.; Liu, F.S.; Tang, B.; Liu, Q.J. First-principles study of the atomic structures, electronic properties, and surface stability of BaTiO3 (001) and (011) surfaces. Surf. Interface Anal. 2019, 51, 1021–1032. [Google Scholar] [CrossRef]
- Ye, J.; Mou, S.; Zhu, R.; Liu, L.; Li, Y. Orientation competition growth and mechanism of SrTiO3 film on CeO2 layer. Vacuum 2021, 194, 110626. [Google Scholar] [CrossRef]
- Queralt, O.M.; De La Mata, M.; Arbiol, J.; Obradors, X.; Puig, T. Disentangling epitaxial growth mechanisms of solution derived functional oxide thin film. Adv. Funct. Mater. Interfaces 2016, 3, 1600392. [Google Scholar] [CrossRef]
- Xiao, R.; Yang, Q.; Walker, B.; Gonder, C.A.; Romain, G.C.; Mundell, R.; Bohura, M.; Pradhan, A. Competition between (001) and (111) MgO thin film growth on Al-doped ZnO by oxygen plasma assisted pulsed laser deposition. J. Appl. Phys. 2013, 113, 214102. [Google Scholar] [CrossRef]
- Kamran, M.A.; Siddique, S.; Ullah, S.; Alharbi, T.; Raza, M.; Usama, M.; Zou, B. Bifunctional strontium-doped barium oxide nanorods as promising photocatalysts and electrodes for energy storage applications. J. Energy Storage 2023, 67, 107598. [Google Scholar] [CrossRef]
- Hellman, E.; Hartford, E. Adsorption controlled molecular beam epitaxy of rubidium barium bismuth oxide. J. Vac. Sci. Technol. B 1990, 8, 332–335. [Google Scholar] [CrossRef]
Growth Condition | (°) | (011)/(001)+(011) | t (nm) | Rq (nm) | Bi/Ba (RBS Data) | ||
---|---|---|---|---|---|---|---|
STO substrate | 600 °C | 14.41 | 20.81 | 7.56% | 30 | 0.4 | 0.97 ± 0.03 |
650 °C | 14.56 | 20.80 | 11.81% | 27 | 0.2 | 0.96 ± 0.03 | |
700 °C | 14.45 | – | – | 35 | 3.5 | 0.008 ± 0.002 | |
600 °C (with BaO buffer layer) | 14.41 | 20.81 | 1.62% | 30 | |||
MgO substrate | 600 °C | 14.60 | – | 100% | 33 ± 4 | 4.5 | 1.24 ± 0.04 |
650 °C | 14.60 | 20.86 | 6.44% | 32 ± 3 | 0.9 | 1.55 ± 0.05 | |
700 °C | 14.68 | 20.87 | 2.37% | 38 ± 5 | 0.5 | 1.29 ± 0.04 | |
600 °C (JBi/JBa = 1.7/1.7) | 14.57 | 20.81 | 54.49% | 25 | 1 | 1.09 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.; De Gendt, S.; Merckling, C. Epitaxial Growth of BaBiO3 Thin Films on SrTiO3(001) and MgO(001) Substrates Using Molecular Beam Epitaxy: Controlling the Competition Between Crystal Orientations. Crystals 2025, 15, 534. https://doi.org/10.3390/cryst15060534
Ahmed I, De Gendt S, Merckling C. Epitaxial Growth of BaBiO3 Thin Films on SrTiO3(001) and MgO(001) Substrates Using Molecular Beam Epitaxy: Controlling the Competition Between Crystal Orientations. Crystals. 2025; 15(6):534. https://doi.org/10.3390/cryst15060534
Chicago/Turabian StyleAhmed, Islam, Stefan De Gendt, and Clement Merckling. 2025. "Epitaxial Growth of BaBiO3 Thin Films on SrTiO3(001) and MgO(001) Substrates Using Molecular Beam Epitaxy: Controlling the Competition Between Crystal Orientations" Crystals 15, no. 6: 534. https://doi.org/10.3390/cryst15060534
APA StyleAhmed, I., De Gendt, S., & Merckling, C. (2025). Epitaxial Growth of BaBiO3 Thin Films on SrTiO3(001) and MgO(001) Substrates Using Molecular Beam Epitaxy: Controlling the Competition Between Crystal Orientations. Crystals, 15(6), 534. https://doi.org/10.3390/cryst15060534