NIR-Emitting Scintillators Based on CsI Single Crystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Crystal Growth
2.2. Spectroscopic Measurement Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIR | Near-Infrared Light |
VUV | Vacuum ultraviolet |
UV | Ultraviolet |
STE | Self-trapped exciton |
XRL | X-ray excited luminescence |
References
- Kim, J.; Park, J.; Park, B.; Kim, Y.; Park, B.; Park, S.H. Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy. Sensors 2025, 25, 857. [Google Scholar] [CrossRef] [PubMed]
- Strigari, L.; Marconi, R.; Solfaroli-Camillocci, E. Evolution of Portable Sensors for In-Vivo Dose and Time-Activity Curve Monitoring as Tools for Personalized Dosimetry in Molecular Radiotherapy. Sensors 2023, 23, 2599. [Google Scholar] [CrossRef]
- Kodama, S.; Kurosawa, S.; Morishita, Y.; Usami, H.; Torii, T.; Hayashi, M.; Sasano, M.; Azuma, T.; Tanaka, H.; Kochurikhin, V.; et al. Growth and Scintillation Properties of a New Red-Emitting Scintillator Rb2HfI6 for the Fiber-Reading Radiation Monitor. IEEE Trans. Nucl. Sci. 2020, 67, 1055–1062. [Google Scholar] [CrossRef]
- Bartram, R.H.; Kappers, L.A.; Hamilton, D.S.; Brecher, C.; Ovechkina, E.E.; Miller, S.R.; Nagarkar, V.V. Multiple Thermoluminescence Glow Peaks and Afterglow Suppression in CsI:Tl Co-Doped with Eu2+ or Yb2+, shorttitle = Multiple Thermoluminescence Glow Peaks and Afterglow Suppression in CsI. IOP Conf. Ser. Mater. Sci. Eng. 2015, 80, 012003. [Google Scholar] [CrossRef]
- van Aarle, C.; Krämer, K.W.; Dorenbos, P. Lengthening of the Sm2+ 4f55d → 4f6 Decay Time through Interplay with the 4f6[5D0] Level and Its Analogy to Eu2+ and Pr3+. J. Lumin. 2024, 266, 120329. [Google Scholar] [CrossRef]
- Wen, X.; Kucerkova, R.; Babin, V.; Prusa, P.; Kotykova, M.; Nikl, M.; Li, W.; Wang, Q.; Kurosawa, S.; Wu, Y. Scintillator-Oriented near-Infrared Emitting Cs4SrI6:Yb2+, Sm2+ Single Crystals via Sensitization Strategy. J. Am. Ceram. Soc. 2023, 106, 6762–6768. [Google Scholar] [CrossRef]
- Alekhin, M.S.; Awater, R.H.P.; Biner, D.A.; Krämer, K.W.; de Haas, J.T.M.; Dorenbos, P. Luminescence and Spectroscopic Properties of Sm2+ and Er3+ Doped SrI2. J. Lumin. 2015, 167, 347–351. [Google Scholar] [CrossRef]
- Dixie, L.C.; Edgar, A.; Bartle, M.C. Spectroscopic and Radioluminescence Properties of Two Bright X-ray Phosphors: Strontium Barium Chloride Doped with Eu2+ or Sm2+ Ions. J. Lumin. 2014, 149, 91–98. [Google Scholar] [CrossRef]
- Wolszczak, W.; Krämer, K.W.; Dorenbos, P. CsBa2I5:Eu2+,Sm2+—The First High-Energy Resolution Black Scintillator for γ-Ray Spectroscopy. Phys. Status Solidi (RRL) Rapid Res. Lett. 2019, 13, 1900158. [Google Scholar] [CrossRef]
- Wolszczak, W.; Krämer, K.W.; Dorenbos, P. Engineering Near-Infrared Emitting Scintillators with Efficient Eu2+ → Sm2+ Energy Transfer. J. Lumin. 2020, 222, 117101. [Google Scholar] [CrossRef]
- van Aarle, C.; Krämer, K.W.; Dorenbos, P. The Role of Yb2+ as a Scintillation Sensitiser in the Near-Infrared Scintillator CsBa2I5:Sm2+. J. Lumin. 2021, 238, 118257. [Google Scholar] [CrossRef]
- Awater, R.H.P.; Alekhin, M.S.; Biner, D.A.; Krämer, K.W.; Dorenbos, P. Converting SrI2:Eu2+ into a near Infrared Scintillator by Sm2+ Co-Doping. J. Lumin. 2019, 212, 1–4. [Google Scholar] [CrossRef]
- Sofich, D.; Myasnikova, A.; Bogdanov, A.; Pankratova, V.; Pankratov, V.; Kaneva, E.; Shendrik, R. Crystal Growth and Spectroscopy of Yb2+-Doped CsI Single Crystal. Crystals 2024, 14, 500. [Google Scholar] [CrossRef]
- Sofich, D.O.; Bogdanov, A.I.; Shendrik, R.Y. Spectroscopic and Vibrational Properties of CsI Single Crystals Doped with Divalent Samarium. Opt. Mater. 2025, 162, 116958. [Google Scholar] [CrossRef]
- Gektin, A.; Shiran, N.; Belsky, A.; Vasyukov, S. Luminescence Properties of CsI:Eu Crystals. Opt. Mater. 2012, 34, 2017–2020. [Google Scholar] [CrossRef]
- Pankratova, V.; Kozlova, A.P.; Buzanov, O.A.; Chernenko, K.; Shendrik, R.; Šarakovskis, A.; Pankratov, V. Time-Resolved Luminescence and Excitation Spectroscopy of Co-Doped Gd3Ga3Al2O12 Scintillating Crystals. Sci. Rep. 2020, 10, 20388. [Google Scholar] [CrossRef]
- Pankratov, V.; Kotlov, A. Luminescence Spectroscopy under Synchrotron Radiation: From SUPERLUMI to FINESTLUMI. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 474, 35–40. [Google Scholar] [CrossRef]
- Chernenko, K.; Kivimäki, A.; Pärna, R.; Wang, W.; Sankari, R.; Leandersson, M.; Tarawneh, H.; Pankratov, V.; Kook, M.; Kukk, E.; et al. Performance and Characterization of the FinEstBeAMS Beamline at the MAX IV Laboratory. J. Synchrotron Radiat. 2021, 28, 1620–1630. [Google Scholar] [CrossRef]
- Rodriguez-Betancourtt, V.M.; Nattland, D. Raman Spectroscopic Study of Mixed Valence Neodymium and Cerium Chloride Solutions in Eutectic LiCl–KCl Melts. Phys. Chem. Chem. Phys. 2005, 7, 173–179. [Google Scholar] [CrossRef]
- Radzhabov, E.A. Spectroscopy of Divalent Samarium in Alkaline-Earth Fluorides. Opt. Mater. 2018, 85, 127–132. [Google Scholar] [CrossRef]
- Suta, M.; Urland, W.; Daul, C.; Wickleder, C. Photoluminescence Properties of Yb2+ Ions Doped in the Perovskites CsCaX3 and CsSrX3 (X = Cl, Br, and I) – a Comparative Study. Phys. Chem. Chem. Phys. 2016, 18, 13196–13208. [Google Scholar] [CrossRef]
- Zeng, P.; Cao, Z.; Chen, Y.; Yin, M. Investigation of the Temperature Characteristic in SrB4O7:Sm2+ Phosphor-in-Glass by Analyzing the Lifetime of 684 Nm. J. Rare Earths 2017, 35, 783–786. [Google Scholar] [CrossRef]
- Guzzi, M.; Baldini, G. Luminescence and Energy Levels of Sm2+ in Alkali Halides. J. Lumin. 1973, 6, 270–284. [Google Scholar] [CrossRef]
- Shiran, N.; Gektin, A.; Boyarintseva, Y.; Vasyukov, S.; Boyarintsev, A.; Pedash, V.; Tkachenko, S.; Zelenskaya, O.; Zosim, D. Modification of NaI Crystal Scintillation Properties by Eu-doping. Opt. Mater. 2010, 32, 1345–1348. [Google Scholar] [CrossRef]
- Shendrik, R.; Radzhabov, E. Absolute Light Yield Measurements on SrF2 and BaF2 Doped With Rare Earth Ions. IEEE Trans. Nucl. Sci. 2014, 61, 406–410. [Google Scholar] [CrossRef]
- Ucer, K.B.; Bizarri, G.; Burger, A.; Gektin, A.; Trefilova, L.; Williams, R.T. Electron Thermalization and Trapping Rates in Pure and Doped Alkali and Alkaline-Earth Iodide Crystals Studied by Picosecond Optical Absorption. Phys. Rev. B 2014, 89, 165112. [Google Scholar] [CrossRef]
- Shendrik, R.; Radzhabov, E. Energy Transfer Mechanism in Pr-Doped SrF2 Crystals. IEEE Trans. Nucl. Sci. 2012, 59, 2089–2094. [Google Scholar] [CrossRef]
- Khanin, V.; Venevtsev, I.; Chernenko, K.; Pankratov, V.; Klementiev, K.; van Swieten, T.; van Bunningen, A.J.; Vrubel, I.; Shendrik, R.; Ronda, C.; et al. Exciton Interaction with Ce3+ and Ce4+ Ions in (LuGd)3(Ga,Al)5O12 Ceramics. J. Lumin. 2021, 237, 118150. [Google Scholar] [CrossRef]
- Li, P.; Gridin, S.; Ucer, K.B.; Williams, R.T.; Del Ben, M.; Canning, A.; Moretti, F.; Bourret, E. Picosecond Absorption Spectroscopy of Excited States in BaBrCl with and without Eu Dopant and Au Codopant. Phys. Rev. Appl. 2019, 12, 014035. [Google Scholar] [CrossRef]
- Gektin, A.; Shiran, N.; Vasyukov, S.; Belsky, A.; Sofronov, D. Europium Emission Centers in CsI:Eu Crystal. Opt. Mater. 2013, 35, 2613–2617. [Google Scholar] [CrossRef]
- Yakovlev, V.; Trefilova, L.; Karnaukhova, A.; Ovcharenko, N. Energy Transfer Mechanism in CsI:Eu Crystal. J. Lumin. 2014, 148, 274–276. [Google Scholar] [CrossRef]
- Hsu, O.L.; Bates, C.W. Excitonic Emission from CsI(Na). Phys. Rev. B 1977, 15, 5821–5833. [Google Scholar] [CrossRef]
- Yakovlev, V.; Trefilova, L.; Meleshko, A.; Ovcharenko, N. Luminescence of Eu2+–Vc- Dipoles and Their Associates in CsI:Eu Crystals. J. Lumin. 2012, 132, 2476–2478. [Google Scholar] [CrossRef]
- Lushchik, C.; Lushchik, A. Evolution of Anion and Cation Excitons in Alkali Halide Crystals. Phys. Solid State 2018, 60, 1487–1505. [Google Scholar] [CrossRef]
- Shalaev, A.A.; Shendrik, R.; Myasnikova, A.S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A. Luminescence of BaBrI and SrBrI Single Crystals Doped with Eu2+. Opt. Mater. 2018, 79, 84–89. [Google Scholar] [CrossRef]
- Lushchik, A.; Feldbach, E.; Kink, R.; Lushchik, C.; Kirm, M.; Martinson, I. Secondary Excitons in Alkali Halide Crystals. Phys. Rev. B 1996, 53, 5379–5387. [Google Scholar] [CrossRef] [PubMed]
- Sisodiya, D.S.; Singh, S.G.; Chandrakumar, K.R.S.; Patra, G.D.; Ghosh, M.; Pitale, S.; Sen, S. Optimizing the Scintillation Kinetics of CsI Scintillator Single Crystals by Divalent Cation Doping: Insights from Electronic Structure Analysis and Luminescence Studies. J. Phys. Chem. C 2024, 128, 197–209. [Google Scholar] [CrossRef]
- Brecher, C.; Lempicki, A.; Miller, S.R.; Glodo, J.; Ovechkina, E.E.; Gaysinskiy, V.; Nagarkar, V.V.; Bartram, R.H. Suppression of Afterglow in CsI:Tl by Codoping with Eu2+—I: Experimental. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 558, 450–457. [Google Scholar] [CrossRef]
- Bartram, R.H.; Kappers, L.A.; Hamilton, D.S.; Lempicki, A.; Brecher, C.; Glodo, J.; Gaysinskiy, V.; Ovechkina, E.E. Suppression of Afterglow in CsI:Tl by Codoping with Eu2+—II: Theoretical Model. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 558, 458–467. [Google Scholar] [CrossRef]
- Shahmaleki, S.; Rahmani, F. Scintillation Properties of CsI(Tl) Co-Doped with Tm2+. Radiat. Phys. Eng. 2021, 2, 13–19. [Google Scholar] [CrossRef]
- Takase, S.; Miyazaki, K.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Development of Nd-doped CsI Single Crystal Scintillators Emitting near-Infrared Light. J. Lumin. 2024, 267, 120400. [Google Scholar] [CrossRef]
Sample | Relative XRL Intensity (%) | Estimated Light Output (photons/MeV) 1 |
---|---|---|
CsI:Tl | 100 | 54,000 [25] |
CsI:Yb,Sm | 68 | 36,720 |
CsI:Eu,Sm | 74 | 39,960 |
CsI:Sm | 14 | 7560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofich, D.; Gavrilenko, V.; Pankratova, V.; Pankratov, V.; Kaneva, E.; Shendrik, R. NIR-Emitting Scintillators Based on CsI Single Crystals. Crystals 2025, 15, 489. https://doi.org/10.3390/cryst15060489
Sofich D, Gavrilenko V, Pankratova V, Pankratov V, Kaneva E, Shendrik R. NIR-Emitting Scintillators Based on CsI Single Crystals. Crystals. 2025; 15(6):489. https://doi.org/10.3390/cryst15060489
Chicago/Turabian StyleSofich, Dmitriy, Veronika Gavrilenko, Viktorija Pankratova, Vladimir Pankratov, Ekaterina Kaneva, and Roman Shendrik. 2025. "NIR-Emitting Scintillators Based on CsI Single Crystals" Crystals 15, no. 6: 489. https://doi.org/10.3390/cryst15060489
APA StyleSofich, D., Gavrilenko, V., Pankratova, V., Pankratov, V., Kaneva, E., & Shendrik, R. (2025). NIR-Emitting Scintillators Based on CsI Single Crystals. Crystals, 15(6), 489. https://doi.org/10.3390/cryst15060489