A Rare Yellow Diamond: Reconstruction of the Possible Geological History
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectroscopic Features and Cause of Color
3.2. Habit
3.3. Tetragonal Etch Pits and Microrelief of Stepped Surfaces
3.4. Negative Trigons
3.5. Brown Stains
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khokhryakov, A.F.; Pal’Yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Min. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Liebske, C.; McCammon, C. Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth Planet. Sci. Lett. 2019, 506, 493–506. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Nechaev, D.V.; Sokol, A.G. Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in kimberlite melt. Crystals 2020, 10, 233. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Li, Z.; Chinn, I.; Fulop, A. Geometry of dissolution trigons on diamonds: Implications for the composition of fluid and kimberlite magma emplacement. Lithos 2024, 470, 107526. [Google Scholar] [CrossRef]
- Kumar, A.; Reed, J.; Sant, G.; Biernacki, J. Vertical scanning interferometry: A new method to measure the dissolution dynamics of cementitious minerals. J. Am. Ceram. Soc. 2013, 96, 2766–2778. [Google Scholar] [CrossRef]
- Pignatelli, I.; Giuliani, G.; Morlot, C.; Pardieu, V. The ‘Star of David‘ Pattern and Presence of Macrosteps on Ruby and Sapphire Crystals from Aappaluttoq, Greenland. J. Gemol. 2022, 38, 364–375. [Google Scholar] [CrossRef]
- Pignatelli, I.; Giuliani, G.; Morlot, C.; Bayle, L.D. Unraveling a Rare Polygonal Gold–Pyrite Assemblage: Insights from the Lena Province, Bodaibo Mining District (Russia). Crystals 2025, 15, 4. [Google Scholar] [CrossRef]
- King, J.M.; Shigley, J.E.; Gelb, T.H.; Guhin, S.S.; Hall, M.; Wang, W. Characterization and grading of natural-color yellow diamonds. Gems Gemol. 2005, 41, 88–115. [Google Scholar] [CrossRef]
- Breeding, C.M.; Eaton-Magaña, S.; Shigley, J.E. Naturally colored yellow and orange diamonds: The nitrogen factor. Gems Gemol. 2020, 56, 194–219. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Pamies, G. A defect study and classification of brown diamonds with non-deformation-related color. Minerals 2020, 10, 914. [Google Scholar] [CrossRef]
- Green, B.L.; Collins, A.T.; Breeding, C.M. Diamond spectroscopy, defect centers, color, and treatments. Rev. Mineral. Geochem. 2022, 88, 637–688. [Google Scholar] [CrossRef]
- Malykhin, S.; Mindarava, Y.; Ismagilov, R.; Orekhov, A.; Jelezko, F.; Obraztsov, A. Formation of GeV, SiV, and NV color center in single crystal diamond needles grown by chemical vapor deposition. Phys. Status Solidi B 2019, 256, 1800721. [Google Scholar] [CrossRef]
- Breeding, C.M.; Eaton-Magaña, S.; Shigley, J.E. Natural-color green diamonds: A beautiful conundrum. Gems Gemol. 2018, 54, 2–27. [Google Scholar] [CrossRef]
- Gentile, F.S.; Salustro, S.; Causà, M.; Erba, A.; Carbonniére, P.; Dovesi, R. The VN3H defect in diamond: A quantum-mechanical characterization. Phys. Chem. Chem. Phys. 2017, 19, 22221–22229. [Google Scholar] [CrossRef]
- Kaminsky, F.V.; Polyakov, V.B.; Ber, B.Y.; Kazantsev, D.Y.; Khachatryan, G.K.; Shilobreeva, S.N. Hydrogen in natural diamond: Quantification of N3VH defects using SIMS and FTIR data. Chem. Geol. 2024, 661, 122185. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Harte, B.; Edinburgh Ion Microprobe Facility (EIMF); Shatsky, V.S.; Politov, A.A.; Rylov, G.M.; Sobolev, N.V. Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib. Mineral. Petrol. 2006, 151, 45–57. [Google Scholar] [CrossRef]
- Woods, G.S.; Collins, A.T. Infrared absorption spectra of hydrogen complexes in type I diamonds. J. Phys. Chem. Solids 1983, 44, 471–475. [Google Scholar] [CrossRef]
- Wang, M.; Shi, G.; Yuan, J.C.C.; Han, W.; Bai, Q. Spectroscopic Characteristics of Treated-Color Natural Diamonds. J. Spectrosc. 2018, 2018, 8153941. [Google Scholar] [CrossRef]
- Goss, J.P.; Coomer, B.J.; Jones, R.; Fall, C.J.; Briddon, P.R.; Öberg, S. Extended defects in diamond: The interstitial platelet. Phys. Rev. B 2003, 67, 165208. [Google Scholar] [CrossRef]
- Haggerty, S. Diamond genesis in a multiply-constrained model. Nature 1986, 320, 34–38. [Google Scholar] [CrossRef]
- Sunagawa, I. Growth and morphology of diamond crystals under stable and metastable conditions. J. Cryst. Growth 1990, 99, 1156–1161. [Google Scholar] [CrossRef]
- Pal’yanov, Y.; Khokhryakov, A.; Borzdov, Y.; Kupriyanov, I.N. Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 2013, 13, 5411–5419. [Google Scholar] [CrossRef]
- Federtchouk, Y.; Zhang, Z. Diamond resorption: Link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma? Can. Mineral. 2011, 49, 707–719. [Google Scholar] [CrossRef]
- Pal’yanov, Y.; Kupriyanov, I.N.; Khokhryakov, A.; Borzdov, Y.; Gusev, V.; Van Royen, J. Crystal growth and characterization of HPHT diamond from phosphorus-carbon system. Diam. Relat. Mater. 2003, 12, 1510–1616. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 2010, 95, 1508–1514. [Google Scholar] [CrossRef]
- Welbourn, C.M.; Rooney, M.L.T.; Evans, D.J.F. A study of diamonds of cube and cube-related shape from the Jwaneng Mine. J. Cryst. Growth 1989, 94, 229–252. [Google Scholar] [CrossRef]
- Sunagawa, I. Crystals: Growth, Morphology, & Perfection; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Smit, K.V.; Shirey, S.B. Diamonds are not forever! Diamond dissolution. Gems Gemol. 2020, 56, 148–155. [Google Scholar]
- Zhang, Z. Diamond Resorption Morphology as a Fluid Proxy in Diamond-Bearing Elements: Constraints from Empirical and Experimental Studies. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2016. [Google Scholar]
- Fedortchouk, Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Sci. Rev. 2019, 193, 45–65. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D.; Carlson, J.A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Mineral. Petrol. 2005, 150, 54–69. [Google Scholar] [CrossRef]
- Kanda, H.; Yamaoka, S.; Setaka, N.; Komatsu, H. Etching of diamond octahedrons by high pressure water. J. Cryst. Growth 1977, 38, 1–7. [Google Scholar] [CrossRef]
- Eaton-Magaña, S.C.; Moe, K.S. Temperature effects on radiation stains in natural diamonds. Diam. Relat. Mater. 2016, 64, 130–142. [Google Scholar] [CrossRef]
- Eaton-Magaña, S.; Breeding, C.M.; Bassoo, R. Low-temperature annealing and kinetics of radiation stains in natural diamond. Diam. Relat. Mater. 2023, 132, 109649. [Google Scholar] [CrossRef]
- Nasdala, L.; Grambole, D.; Wildner, M.; Gigler, A.M.; Hainschwang, T.; Zaitsev, A.M.; Harris, J.; Milledge, J.; Schulze, D.J.; Hofmeister, W.; et al. Radio-colouration of diamond: A spectroscopic study. Contrib. Mineral. Petrol. 2013, 165, 843–861. [Google Scholar] [CrossRef]
- Vance, E.R.; Harris, J.W.; Milledge, H.J. Possible origins of α-damage in diamonds from kimberlite and alluvial sources. Miner. Mag. 1973, 39, 349–360. [Google Scholar] [CrossRef]
- Raal, F.A.; Robinson, D.N. Green for rarity. Nucl. Act. 1980, 13, 5–8. [Google Scholar]
- Karfunkel, J.; Chaves, M.L.S.C.; Svisero, D.P.; Meyer, H.O.A. Diamonds from Minas Gerais, Brazil: An update on sources, origin, and production. Int. Geol. Rev. 1994, 36, 1019–1032. [Google Scholar] [CrossRef]
- Kaminsky, F.V.; Zakharchenko, O.D.; Griffin, W.L.; Channer, D.M.D.; Khachatryan-Blinova, G.K. Diamond from the Guaniamo area, Venezuela. Can. Mineral. 2000, 38, 1347–1370. [Google Scholar] [CrossRef]
- Smit, K.V.; D’Haenens-Johansson, U.F.; Howell, D.; Loudin, L.C.; Wang, W. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton). Mineral. Petrol. 2018, 112, 243–257. [Google Scholar] [CrossRef]
UV–Vis–NIR Bands (nm) | Attribution to Structural Defects |
---|---|
415, 373, 383, 392, 404 | N3 |
478 | N2 |
670 | CI or NV− center |
840 | Ni-related defects |
Infrared bands (cm−1) | Attribution to structural defects |
3107 and 1405 | N3VH0 |
1377 | Platelets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignatelli, I.; Ferraris, C. A Rare Yellow Diamond: Reconstruction of the Possible Geological History. Crystals 2025, 15, 461. https://doi.org/10.3390/cryst15050461
Pignatelli I, Ferraris C. A Rare Yellow Diamond: Reconstruction of the Possible Geological History. Crystals. 2025; 15(5):461. https://doi.org/10.3390/cryst15050461
Chicago/Turabian StylePignatelli, Isabella, and Cristiano Ferraris. 2025. "A Rare Yellow Diamond: Reconstruction of the Possible Geological History" Crystals 15, no. 5: 461. https://doi.org/10.3390/cryst15050461
APA StylePignatelli, I., & Ferraris, C. (2025). A Rare Yellow Diamond: Reconstruction of the Possible Geological History. Crystals, 15(5), 461. https://doi.org/10.3390/cryst15050461