Machine-Learning-Driven Analysis of Wear Loss and Frictional Behavior in Magnesium Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanisms of Wear and Friction in Magnesium, Boron Carbide and Graphite Hybrid MMCs
2.2. ML to Predict Tribological Characterization
2.2.1. Collection of Data
2.2.2. Key Input Variables and Output Metrics
2.2.3. ML Models or Algorithms
2.2.4. Optimization of Different ML Models’ Parameters
3. Results and Discussion
3.1. Factors Affecting the Tribological Behavior of Magnesium Composites
3.2. Model Performance Evaluation
3.3. Impact of Independent Variables and Correlation Heatmap
3.4. Validation and Prediction of Different Models
3.5. Auto-Correlation Study for the GBM Model
4. Conclusions
- Magnesium hybrid composites were successfully produced through the powder metallurgy process, reinforced with varying weight percentages of boron carbide (B4C) and graphite particulates. The tribological behavior (wear loss and COF) of these composites was examined concerning material properties and testing conditions, using both traditional and data-driven analysis.
- Five ML models were developed using 86 training, 29 validation, and 39 test data points (total: 154 data points) to predict wear loss and COF. Performance analysis confirmed that ML models effectively captured nonlinear relationships in tribological behavior. The Gradient Boosting Machine (GBM) outperformed other models in predicting both wear loss (R2: 0.89, MSE: 4.47 × 10−7, RMSE: 0.00066, MAE: 0.00048) and COF (R2: 0.83, MSE: 0.0011, RMSE: 0.0332, MAE: 0.0244).
- Feature importance analysis indicated that the type of reinforcement particles, particularly graphite particles, had the most significant effect on both wear loss and COF.
- For wear loss, the heatmap correlation showed that increasing graphite powder content and sliding speed led to decreased wear loss, while higher magnesium powder content, applied load, and sliding distance resulted in increased wear loss.
- In the COF analysis, the heatmap correlation revealed that sliding speed and graphite powder content contributed to a decrease in COF, while sliding distance, applied load, and magnesium powder content were associated with an increase in COF. The presence of B4C powder had minimal impact on the COF.
- The study provides quantitative insights into the wear mechanisms of magnesium hybrid composites, demonstrating that ML models can serve as powerful predictive tools for tribological behavior. These findings highlight the potential of ML-driven approaches in optimizing material compositions for wear-resistant applications in automotive, aerospace, and biomedical industries.
- Integration of multi-objective optimization techniques with machine learning models can further assist in identifying the optimal composition and process parameters for achieving superior wear resistance and friction performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goh, C.S.; Gupta, M.; Wei, J.; Lee, L.C. The Cyclic Deformation Behavior of Mg—Y2O3 Nanocomposites. J. Compos. Mater. 2008, 42, 2039–2050. [Google Scholar] [CrossRef]
- Lindroos, V.K.; Talvitie, M.J. Recent advances in metal matrix composites. J. Mater. Process. Technol. 1995, 53, 273–284. [Google Scholar] [CrossRef]
- Eliezer, D.; Aghion, E.; Froes, F.H. Magnesium Science, Technology and Applications. Adv. Perform. Mater. 1998, 5, 201–212. [Google Scholar] [CrossRef]
- Kumar, K.K.A.; Pillai, U.T.S.; Pai, B.C.; Chakraborty, M. Dry sliding wear behaviour of Mg–Si alloys. Wear 2013, 303, 56–64. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Zhao, Y.; Wei, M. Evaluation of wear characteristics of Al3Tip/Mg composite. Mater. Charact. 2010, 61, 554–563. [Google Scholar] [CrossRef]
- Lee, W.; Lee, C.; Kim, M.; Yoon, J.; Kim, Y.; Yoen, Y.; Jung, S. Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite. Compos. Sci. Technol. 2006, 66, 1513–1520. [Google Scholar] [CrossRef]
- Singh, N.; Belokar, R.M. Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: A state-of-art review. Mater. Today Proc. 2021, 44, 460–466. [Google Scholar] [CrossRef]
- Anand, N.; Senthil, S.K. Development and influence of tribomechanical properties on magnesium based hybrid metal matrix composites-A review. Mater. Res. Express 2020, 7, 036520. [Google Scholar] [CrossRef]
- Aydin, F.; Sun, Y. Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can. Metall. Q. 2018, 57, 455–469. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.-Y.; Xiu, K.; Wang, H.-Y.; Jiang, Q.-C. Fabrication of TiB2 particulate reinforced magnesium matrix composites by two-step processing method. Mater. Lett. 2006, 60, 1533–1537. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, C.; Han, B.; Qiu, J.; Qin, S.; Gao, K.; Liu, J.; Sun, S.; Zhang, H. Microstructures and Mechanical Properties of Nanocrystalline AZ31 Magnesium Alloy Powders with Submicron TiB2 Additions Prepared by Mechanical Milling. Crystals 2020, 10, 550. [Google Scholar] [CrossRef]
- Meher, A.; Mahapatra, M.M.; Samal, P.; Vundavilli, P.R. Modeling the abrasive wear behavior of in-situ synthesized magnesium RZ5/TiB2 metal matrix composites, Proceedings of the Institution of Mechanical Engineers. Part E J. Process Mech. Eng. 2022, 236, 1500–1510. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, X.G.; Sui, L.; Zhang, T.; Pang, L.; Jin, J.Z. Fabrication of ZrB2 particles reinforced AZ31 magnesium matrix composite by powder metallurgy and subsequent hot extrusion. Mater. Res. Innov. 2010, 14, 206–209. [Google Scholar] [CrossRef]
- Lu, L.; Lim, C.Y.H.; Yeong, W.M. Effect of reinforcements on strength of Mg9%Al composites. Compos. Struct. 2004, 66, 41–45. [Google Scholar] [CrossRef]
- Aydin, F.; Sun, Y.; Ahlatci, H.; Turen, Y. Investigation of Microstructure, Mechanical and Wear Behaviour of B4C Particulate Reinforced Magnesium Matrix Composites by Powder Metallurgy. Trans. Indian Inst. Met. 2018, 71, 873–882. [Google Scholar] [CrossRef]
- Behnamian, Y.; Serate, D.; Aghaie, E.; Zahiri, R.; Tolentino, Z.; Niazi, H.; Mostafaei, A. Tribological behavior of ZK60 magnesium matrix composite reinforced by hybrid MWCNTs/B4C prepared by stir casting method. Tribol. Int. 2022, 165, 107299. [Google Scholar] [CrossRef]
- Banijamali, S.M.; Palizdar, Y.; Nekouee, K.A.; Najafi, S.; Razavi, M.S. Effect of B4C reinforcement and hot rolling on microstructure and mechanical properties of WE43 magnesium matrix composite. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1854–1868. [Google Scholar] [CrossRef]
- Subramani, M.; Huang, S.-J.; Borodianskiy, K. Effect of SiC Nanoparticles on AZ31 Magnesium Alloy. Materials 2022, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- Khatkar, S.K.; Verma, R.; Sumankant; Kharb, S.S.; Thakur, A.; Sharma, R. Optimization and Effect of Reinforcements on the Sliding Wear Behavior of Self-Lubricating AZ91D-SiC-Gr Hybrid Composites. Silicon 2021, 13, 1461–1473. [Google Scholar] [CrossRef]
- Vijayabhaskar, S.; Rajmohan, T.; Vignesh, T.K.; Venkatakrishnan, H. Effect of nano SiC particles on properties and characterization of Magnesium matrix nano composites. Mater. Today Proc. 2019, 16, 853–858. [Google Scholar] [CrossRef]
- Xiu, K.; Wang, H.Y.; Sui, H.L.; Wang, Y.; Xu, C.L.; Wang, J.G.; Jiang, Q.C. The sliding wear behavior of TiCp/AZ91 magnesium matrix composites. J. Mater. Sci. 2006, 41, 7052–7058. [Google Scholar] [CrossRef]
- Aydin, F.; Sun, Y.; Turan, M.E. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites. J. Compos. Mater. 2020, 54, 141–152. [Google Scholar] [CrossRef]
- Azizieh, M.; Larki, A.N.; Tahmasebi, M.; Bavi, M.; Alizadeh, E.; Kim, H.S. Wear Behavior of AZ31/Al2O3 Magnesium Matrix Surface Nanocomposite Fabricated via Friction Stir Processing. J. Mater. Eng. Perform. 2018, 27, 2010–2017. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, Y.; Zhou, R. Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing. Wear 2013, 305, 286–290. [Google Scholar] [CrossRef]
- Jayabharathy, S.; Mathiazhagan, P. Investigation of mechanical and wear behaviour of AZ91 magnesium matrix hybrid composite with TiO2/graphene. Mater. Today Proc. 2020, 27, 2394–2397. [Google Scholar] [CrossRef]
- Rahmani, K.; Nouri, A.; Wheatley, G.; Malekmohammadi, H.; Bakhtiari, H.; Yazdi, V. Determination of tensile behavior of hot-pressed Mg–TiO2 and Mg–ZrO2 nanocomposites using indentation test and a holistic inverse modeling technique. J. Mater. Res. Technol. 2021, 14, 2107–2114. [Google Scholar] [CrossRef]
- Gnanavelbabu, A.; Surendran, K.T.S.; Loganathan, P.; Vinothkumar, E. Effect of ageing temperature on the corrosion behaviour of UHTC particulates reinforced magnesium composites fabricated through ultrasonic assisted squeeze casting process. J. Alloys Compd. 2021, 856, 158173. [Google Scholar] [CrossRef]
- Zavaliy, I.Y.; Berezovets, V.V.; Oshchapovsky, I.V.; Zasadnyy, T.M. Mg–TiN and Mg–ZrN Nanocomposites as Efficient Materials for the Accumulation and Generation of Hydrogen. Mater. Sci. 2021, 57, 53–60. [Google Scholar] [CrossRef]
- Aydin, F.; Turan, M.E. The Effect of Boron Nitride on Tribological Behavior of Mg Matrix Composite at Room and Elevated Temperatures. J. Tribol. 2020, 142, 011601. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Sabat, R.; Jayalakshmi, S.; Suwas, S.; Almajid, A.; Gupta, M. Mg/BN nanocomposites: Nano-BN addition for enhanced room temperature tensile and compressive response. J. Compos. Mater. 2015, 49, 3045–3055. [Google Scholar] [CrossRef]
- Sun, Y.; Cevik, E.; Turen, Y.; Ahlatci, H.; Turan, M.E.; Aydin, F.; Zengin, H. Influence of GNPs and B4C reinforcements on mechanical, thermal and wear properties of magnesium matrix composite produced by powder metallurgy. J. Compos. Mater. 2021, 55, 3881–3891. [Google Scholar] [CrossRef]
- Zhao, R.; Pei, J.; Du, W.; Zhao, Z.; Zhang, L.; Gao, J.; Bai, P.; Tie, D. Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Adv. Compos. Hybrid. Mater. 2022, 5, 504–512. [Google Scholar] [CrossRef]
- Deng, S.; Zou, L.; Liao, Z.; Lin, Z. Preparation of Structure-Function Integrated Layered CNT/Mg Composites. Materials 2024, 17, 2191. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Baltatu, M.S.; Vizureanu, P. The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review. Nanomaterials 2024, 14, 756. [Google Scholar] [CrossRef]
- Demirdal, S.; Aydın, F. The influence of low-cost eggshell on the wear and electrochemical corrosion behaviour of novel pure Mg matrix composites. Mater. Chem. Phys. 2022, 277, 125520. [Google Scholar] [CrossRef]
- Ramanujam, N.; Muthukumaran, S.; Rao, B.N.; Ramarao, M.; Mangrulkar, A.L.; Ali, K.S.A.; Pugazhendhi, L.; Markos, M. Experimental Investigations on Mechanical Properties of AZ31/Eggshell Particle-Based Magnesium Composites. Adv. Mater. Sci. Eng. 2022, 2022, 4883764. [Google Scholar] [CrossRef]
- Dinaharan, I.; Vettivel, S.C.; Balakrishnan, M.; Akinlabi, E.T. Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites. J. Magnes. Alloys 2019, 7, 155–165. [Google Scholar] [CrossRef]
- Yu, S.R.; Huang, Z.Q. Dry Sliding Wear Behavior of Fly Ash Cenosphere/AZ91D Mg Alloy Composites. J. Mater. Eng. Perform. 2014, 23, 3480–3488. [Google Scholar] [CrossRef]
- Prakash, K.S.; Moorthy, R.S.; Gopal, P.M.; Kavimani, V. Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance. Int. J. Refract. Met. Hard Mater. 2016, 54, 223–229. [Google Scholar] [CrossRef]
- Batista, J.C.A.; Godoy, C.; Matthews, A. Micro-scale abrasive wear testing of duplex and non-duplex (single-layered) PVD (Ti,Al)N, TiN and Cr–N coatings. Tribol. Int. 2002, 35, 363–372. [Google Scholar] [CrossRef]
- Lasheras, F.S.; Nieto, P.J.G.; de Cos Juez, F.J.; Vilán, J.A.V. Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process. Appl. Math. Comput. 2014, 227, 164–170. [Google Scholar] [CrossRef]
- Wang, G.; Qian, L.; Guo, Z. Continuous tool wear prediction based on Gaussian mixture regression model. Int. J. Adv. Manuf. Technol. 2013, 66, 1921–1929. [Google Scholar] [CrossRef]
- Xu, L.-J.; Xing, J.-D.; Wei, S.-Z.; Zhang, Y.-Z.; Long, R. Artificial neural network prediction on wear properties of high vanadium high speed steel (HVHSS) rolls. Mater. Sci. Technol. 2007, 23, 315–319. [Google Scholar] [CrossRef]
- Çetinel, H.; Öztürk, H.; Çelik, E.; Karlık, B. Artificial neural network-based prediction technique for wear loss quantities in Mo coatings. Wear 2006, 261, 1064–1068. [Google Scholar] [CrossRef]
- Tan, Y.; He, L.; Wang, X.; Hong, X.; Wang, W. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings. Trans. Nonferrous Met. Soc. China 2014, 24, 2566–2573. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Gyurova, L.A.; Friedrich, K. Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribol. Int. 2011, 44, 603–609. [Google Scholar] [CrossRef]
- Graser, J.; Kauwe, S.K.; Sparks, T.D. Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons. Chem. Mater. 2018, 30, 3601–3612. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods. J. Tribol. 2022, 144, 011701. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Chang, S. Predicting running-in wear volume with a SVMR-based model under a small amount of training samples. Tribol. Int. 2018, 128, 349–355. [Google Scholar] [CrossRef]
- Aydin, F. The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Adv. Powder Technol. 2021, 32, 445–463. [Google Scholar] [CrossRef]
- Aydin, F.; Durgut, R.; Mustu, M.; Demir, B. Prediction of wear performance of ZK60/CeO2 composites using machine learning models. Tribol. Int. 2023, 177, 107945. [Google Scholar] [CrossRef]
- Abdallah, M.; Fathi, R.; Chen, M.; Saleh, B. Wear Prediction of Functionally Graded Composites Using Machine Learning. Materials 2024, 17, 4523. [Google Scholar] [CrossRef] [PubMed]
- Lanka, S.; Alexandrova, E.; Kozhukhova, M.; Hasan, M.S.; Nosonovsky, M.; Sobolev, K. Tribological and Wetting Properties of TiO2 Based Hydrophobic Coatings for Ceramics. J. Tribol. 2019, 141, 101301. [Google Scholar] [CrossRef]
- Hasan, M.S.; Zemajtis, F.; Nosonovsky, M.; Sobolev, K. Synthesis of ZnO/TiO2-Based Hydrophobic Antimicrobial Coatings for Steel and Their Roughness, Wetting, and Tribological Characterization. J. Tribol. 2022, 144, 081402. [Google Scholar] [CrossRef]
- Hasan, M.S.; Nosonovsky, M. Lotus Effect and Friction: Does Nonsticky Mean Slippery? Biomimetics 2020, 5, 28. [Google Scholar] [CrossRef]
- Wilson, S.; Alpas, A.T. Wear mechanism maps for metal matrix composites. Wear 1997, 212, 41–49. [Google Scholar] [CrossRef]
- Pasha, M.B.; Rao, R.N.; Ismail, S.; Gupta, M.; Prasad, P.S. Tribo-informatics approach to predict wear and friction coefficient of Mg/Si3N4 composites using machine learning techniques. Tribol. Int. 2024, 196, 109696. [Google Scholar] [CrossRef]
Sl No | Mg Powder (wt%) | B4C Powder (wt%) | Gr. Powder (wt%) |
---|---|---|---|
1 | 100 | 0 | 0 |
2 | 95 | 5 | 0 |
3 | 90 | 10 | 0 |
4 | 95 | 0 | 5 |
5 | 90 | 0 | 10 |
6 | 90 | 5 | 5 |
7 | 85 | 10 | 5 |
8 | 80 | 10 | 10 |
9 | 85 | 5 | 10 |
Model | Particular Parameters |
---|---|
ANN | Alpha = 0.01; Activation Function: tansig (1st hidden layer); logsig (2nd hidden layer); purelin (output layer); Hidden layers = (10, 5) |
KNN | n_neighbors = 10; Weights = ‘uniform’ |
RF | n_estimators = 100; max_features = 2 |
SVM | Kernel Function: linear; Kernel Scale (Gamma): 969.092; C (Box Constraint): 359.5019 |
GBM | n_iestimators: 100; Max Depth: 1; Learning Rate: 0.1 |
Model | Particular Parameters |
---|---|
ANN | Alpha = 0.01; Activation Function: tansig (1st hidden layer), logsig (2nd hidden layer), purelin (output layer); Hidden layers = (8, 4) |
KNN | n_neighbors = 10; Weights = ‘uniform’ |
RF | n_estimators = 120; max_features = 3 |
SVM | Kernel Function: polynomial; Kernel Scale (Gamma): 1; C (Box Constraint): 1 |
GBM | n_iestimators: 100; Max Depth: 1; Learning Rate: 0.1 |
Model | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
ANN | 1.0596 × 10−6 | 0.0010294 | 0.00083431 | 0.75565 |
KNN | 1.2339 × 10−6 | 0.0011108 | 0.000835 | 0.7858 |
RF | 1.031 × 10−6 | 0.0010154 | 0.00080914 | 0.72001 |
SVM | 7.8438 × 10−7 | 0.00088565 | 0.00065783 | 0.80112 |
GBM | 4.4567 × 10−7 | 0.00066758 | 0.00048194 | 0.88914 |
Model | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
ANN | 0.00068406 | 0.026155 | 0.02114 | 0.80428 |
KNN | 0.0042372 | 0.065094 | 0.057691 | 0.55682 |
RF | 0.0019593 | 0.044264 | 0.036311 | 0.7472 |
SVM | 0.0020778 | 0.045583 | 0.039353 | 0.66813 |
GBM | 0.0011032 | 0.033214 | 0.024421 | 0.83406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haldar, B.; Joardar, H.; Mondal, A.K.; Alrasheedi, N.H.; Khan, R.; Papathi, M.P. Machine-Learning-Driven Analysis of Wear Loss and Frictional Behavior in Magnesium Hybrid Composites. Crystals 2025, 15, 452. https://doi.org/10.3390/cryst15050452
Haldar B, Joardar H, Mondal AK, Alrasheedi NH, Khan R, Papathi MP. Machine-Learning-Driven Analysis of Wear Loss and Frictional Behavior in Magnesium Hybrid Composites. Crystals. 2025; 15(5):452. https://doi.org/10.3390/cryst15050452
Chicago/Turabian StyleHaldar, Barun, Hillol Joardar, Arpan Kumar Mondal, Nashmi H. Alrasheedi, Rashid Khan, and Murugesan P. Papathi. 2025. "Machine-Learning-Driven Analysis of Wear Loss and Frictional Behavior in Magnesium Hybrid Composites" Crystals 15, no. 5: 452. https://doi.org/10.3390/cryst15050452
APA StyleHaldar, B., Joardar, H., Mondal, A. K., Alrasheedi, N. H., Khan, R., & Papathi, M. P. (2025). Machine-Learning-Driven Analysis of Wear Loss and Frictional Behavior in Magnesium Hybrid Composites. Crystals, 15(5), 452. https://doi.org/10.3390/cryst15050452