Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Glass Ceramics
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Shen, B.; Hao, H.; Zhai, J. Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J. Mater. Chem. C 2019, 7, 15118–15135. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J. Mater. Chem. A 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Xiu, S.; Xiao, S.; Xue, S.; Shen, B.; Zhai, J. Crystallization kinetics behaviour and dielectric properties of strontium barium niobate-based glass–ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 5324–5330. [Google Scholar] [CrossRef]
- Xiu, S.; Xiao, S.; Zhang, W.; Xue, S.; Shen, B.; Zhai, J. Effect of rare-earth additions on the structure and dielectric energy storage properties of BaxSr1-xTiO3-based barium boronaluminosilicate glass-ceramics. J. Alloys Compd. 2016, 670, 217–221. [Google Scholar] [CrossRef]
- Chen, G.H.; Zheng, J.; Yuan, C.L.; Zhou, C.R.; Kang, X.L.; Xu, J.W.; Yang, Y. Enhanced energy storage properties of P2O5 modified niobate-based B2O3 system glass ceramic composites. Mater. Lett. 2016, 176, 46–48. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, T.L.; Zhu, X.L.; Liu, L.; Chen, X.M. Ferroelectric transition and structural modulation in Sr2Na (Nb1−xTax)5O15 tungsten bronze ceramics. J. Appl. Phys. 2021, 129, 244107. [Google Scholar] [CrossRef]
- Kundu, S.; Varma, K.B.R. Evolution of nanocrystalline Ba2NaNb5O15 in 2BaO-0.5Na2O-2.5Nb2O5-4.5B2O3 glass system and its refractive index and band gap tunability. Cryst. Growth Des. 2013, 14, 585–592. [Google Scholar]
- Oliver, J.R.; Neurgaonkar, R.R. Ferroelectric properties of tungsten bronze morphotropic phase bounary systems. J. Am. Ceram. Soc. 1989, 72, 202–211. [Google Scholar] [CrossRef]
- Lin, K.; Zhou, Z.; Liu, L.; Ma, H.; Chen, J.; Deng, J.; Sun, J.; You, L.; Kasai, H.; Kato, K.; et al. Unusual strong incommensurate modulation in a Tungsten-Bronze-Type relaxor PbBiNb5O15. J. Am. Chem. Soc. 2015, 137, 13468–13471. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, R.; Wei, L.; Ren, H. Phase formation, microstructure and dielectric properties of Sr0. 53Ba0. 47Nb2−xTaxO6 ceramics. J. Alloys Compd. 2010, 504, 211–216. [Google Scholar] [CrossRef]
- Yang, Z.J.; Liu, X.Q.; Zhu, X.L.; Chen, X.M. Crossover from normal to relaxor ferroelectric in Sr0. 25Ba0. 75 (Nb1−xTax)2O6 ceramics with tungsten bronze structure. Appl. Phys. Lett. 2020, 117, 122902. [Google Scholar] [CrossRef]
- Feng, W.B.; Zhu, X.L.; Liu, X.Q.; Chen, X.M. Effects of B site ions on the relaxor to normal ferroelectric transition crossover in Ba4Sm2Zr4(NbxTa1−x)6O30 tungsten bronze ceramics. Appl. Phys. Lett. 2018, 112, 262904. [Google Scholar] [CrossRef]
- Xu, S.; Deng, Z.; Shen, S.; Wei, L.; Yang, Z. Structural and electrical effects of Ag substitution in tungsten bronze Sr2AgxNa1− xNb5O15 ceramics. Ceram. Int. 2020, 46, 13997–14004. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, W.; Bu, X.; Zheng, P.; Li, L.; Wen, F.; Bai, W.; Zheng, L.; Zhang, Y. Remarkable capacitive performance in novel tungsten bronze ceramics. Dalton Trans. 2021, 50, 124–130. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, Y.; Meng, X.; Li, E.; Tang, B. Ferroelectric-relaxor crossover and energy storage properties in Sr2NaNb5O15-based tungsten bronze ceramics. ACS Appl. Mater. Interfaces 2022, 14, 9318–9329. [Google Scholar] [CrossRef]
- Wang, H.; Bu, X.; Zhang, X.; Zheng, P.; Li, L.; Wen, F.; Bai, W.; Zhang, J.; Zheng, L.; Zhang, Y. Pb/Bi-free tungsten bronze-based relaxor ferroelectric ceramics with remarkable energy storage performance. ACS Appl. Energy Mater. 2021, 4, 9066–9076. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Kandula, K.R.; Li, W.; Meng, S.; Qin, Y.; Zhang, H.; Zhang, G. Achieving excellent energy storage density of Pb0. 97La0.02 (ZrxSn0. 05Ti0. 95-x) O3 ceramics by the B-site modification. J. Eur. Ceram. Soc. 2021, 41, 360–367. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Cabral, M.J.; Liao, X.; Zhang, S.; Liao, C.; Zhang, G.; Chen, X.; Feng, Q.; Li, J.F. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 2020, 11, 4824. [Google Scholar] [CrossRef]
- Ge, P.Z.; Tang, X.G.; Meng, K.; Huang, X.X.; Li, S.F.; Liu, Q.X.; Jiang, Y.P. Energy storage density and charge-discharge properties of PbHf1− xSnxO3 antiferroelectric ceramics. Chem. Eng. J. 2022, 429, 132540. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Q.; Luo, C.; Lan, Y.; Yuan, C.; Luo, N.; Zhou, C.; Fujita, T.; Xu, J.; Chen, G.; et al. Ultrahigh energy storage density and efficiency in Bi0.5Na0.5TiO3-based ceramics via the domain and bandgap engineering. ACS Appl. Mater. Interfaces 2021, 13, 51218–51229. [Google Scholar] [CrossRef]
- Qin, Y.; Shang, F.; Chen, G.; Xu, J.; Wang, Y.; Li, Z.; Zhai, J. Achieving ultrahigh discharge energy and power density in niobate-based glass ceramics via A-site substitution modulation during crystallization. J. Mater. Chem. A 2022, 10, 11535–11541. [Google Scholar] [CrossRef]
- Li, R.; Pu, Y.; Zhang, Q.; Wang, W.; Li, J.; Du, X.; Chen, M.; Zhang, X.; Sun, Z. The relationship between enhanced dielectric property and structural distortion in Ca doped Ba2NaNb5O15 tungsten bronze ceramics. J. Eur. Ceram. Soc. 2020, 40, 4509–4516. [Google Scholar] [CrossRef]
- Yang, B.; Hao, S.; Yang, P.; Wei, L.; Yang, Z. Relaxor behavior and energy storage density induced by B-sites substitutions in (Ca0. 28Ba0. 72) 2.1 Na0. 8Nb5O15 tungsten bronze ceramics. Ceram. Int. 2018, 44, 8832–8841. [Google Scholar] [CrossRef]
- Yao, Y.B.; Mak, C.L.; Ploss, B. Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5−xNb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten–bronze (TTB) crystal structure. J. Eur. Ceram. Soc. 2012, 32, 4353–4361. [Google Scholar] [CrossRef]
- Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 2021, 32, 2111776. [Google Scholar] [CrossRef]
- Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv. Energy Mater. 2021, 11, 2101378. [Google Scholar] [CrossRef]
- Chen, H.; Shi, J.; Chen, X.; Sun, C.; Pang, F.; Dong, X.; Zhang, H.; Zhou, H. Excellent energy storage properties and stability of NaNbO3-Bi (Mg0.5 Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3. J. Mater. Chem. A 2021, 9, 4789–4799. [Google Scholar] [CrossRef]
- Wu, L.; Tang, L.; Zhai, Y.; Zhang, Y.; Sun, J.; Hu, D.; Pan, Z.; Su, Z.; Zhang, Y.; Liu, J. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0. 875Nb0. 1O3. J. Mater. 2022, 8, 537–544. [Google Scholar]
- Kim, C.; Pilania, G.; Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C 2016, 120, 14575–14580. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, K.; Shen, B.; Zhai, J. Excellent energy storage and charge-discharge performances in sodium-barium-niobium based glass ceramics. Ceram. Int. 2019, 45, 19429–19434. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, T.; Shen, B.; Zhai, J. Effects of crystalline temperature on microstructures and dielectric properties in BaO-Na2O-Bi2O3-Nb2O5-Al2O3-SiO2 glass-ceramics. Mater. Sci. Eng. B 2021, 263, 114885. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Pan, Z.; Shen, B. Effects of Sr substitution for Ba on dielectric and energy-storage properties of SrO-BaO-K2O-Nb2O5-SiO2 glass-ceramics. J. Eur. Ceram. Soc. 2017, 37, 3917–3925. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, K.; Shen, B.; Zhai, J. Enhanced energy-storage density in sodium-barium-niobate based glass-ceramics realized by doping CaF2 nucleating agent. J. Mater. Sci. Mater. Electron. 2019, 30, 15277–15284. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Shen, B.; Xiu, S.; Xiao, S.; Pan, Z. Enhanced energy storage density and discharge efficiency in the strontium sodium niobate-based glass-ceramics. J. Alloys Compd. 2016, 687, 280–285. [Google Scholar] [CrossRef]
- Jiang, D.; Shang, F.; Chen, G. Crystallization behavior, ultrahigh power density and high actual discharge energy density of lead-free borate glass-ceramics containing TiO2. Ceram. Int. 2021, 47, 27142–27150. [Google Scholar] [CrossRef]
- Xue, S.; Liu, S.; Zhang, W.; Shen, B.; Zhai, J. Correlation of energy conversion efficiency and interface polarization in niobate glass-ceramic for energy-storage applications. Appl. Phys. Lett. 2015, 106, 162903. [Google Scholar] [CrossRef]
- Jiang, D.; Zhong, Y.; Shang, F.; Chen, G. Crystallization, microstructure and energy storage behavior of borate glass-ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 12074–12082. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Shen, B.; Cain, M. Ultra high energy-storage density in the barium potassium niobate-based glass-ceramics for energy-storage applications. J. Am. Ceram. Soc. 2016, 99, 2909–2912. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, D.; Zhang, Y.; Liu, J.; Shen, B.; Zhai, J. Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 2019, 7, 4072–4078. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg. Chem. Front. 2019, 6, 2148–2157. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Z.; Chen, T.; Luo, H.; Zhang, H.; Khanom, T.; Zhang, D.; Abrahams, I.; Yan, H. Tunable phase transitions in NaNbO3 ceramics through bismuth/vacancy modification. J. Mater. Chem. C 2021, 9, 4289–4299. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Zhuo, F.; Xu, C.; Zhang, G.; Liu, L.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Ye, J.; Wang, G.; Dong, X.; Withers, R.; Liu, Y. Antiferroelectrics for energy storage applications: A review. Adv. Mater. Technol. 2018, 3, 1800111. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, J.; Li, C.; Bai, W.; Wu, S.; Zheng, P.; Zhang, J.; Zhai, J. High capacitive performance at moderate operating field in (Bi0. 5Na0. 5) TiO3-based dielectric ceramics via synergistic effect of site engineering strategy. Chem. Eng. J. 2021, 426, 130811. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Liu, J.; Yang, K.; Shen, B.; Zhai, J. Ultrahigh energy storage density and instantaneous discharge power density in BaO-PbO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics. J. Mater. Chem. C 2018, 6, 12608–12614. [Google Scholar] [CrossRef]
- Chen, K.K.; Bai, H.R.; Yan, F.; He, X.; Liu, C.S.; Xie, S.F.; Shen, B.; Zhai, J.W. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics. ACS Appl. Mater. Interfaces 2021, 13, 4236–4243. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Cao, F.; Wang, G.; Dong, X.; Hu, Z.; Du, T. Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J. Am. Ceram. Soc. 2010, 93, 4015–4017. [Google Scholar] [CrossRef]
- Liu, C.S.; Xie, S.F.; Bai, H.R.; Yan, F.; Fu, T.T.; Shen, B.; Zhai, J.W. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent. J. Mater. 2022, 8, 763–771. [Google Scholar] [CrossRef]
- Xie, S.; Liu, C.; Bai, H.; Fu, T.; Shen, B.; Zhai, J. Crystallization-temperature controlled alkali-free niobate glass-ceramics with high energy storage density and actual discharge energy density. J. Alloys Compd. 2022, 910, 164923. [Google Scholar] [CrossRef]
- Luo, F.; Xing, J.; Qin, Y.; Zhong, Y.; Shang, F.; Chen, G. Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics. J. Alloys Compd. 2022, 910, 164859. [Google Scholar] [CrossRef]
- Luo, F.; Qin, Y.; Shang, F.; Chen, G. Crystallization temperature dependence of structure, electrical and energy storage properties in BaO-Na2O-Nb2O5-Al2O3-B2O3 glass ceramics. Ceram. Int. 2022, 48, 30661–30669. [Google Scholar] [CrossRef]
- Peng, X.; Pu, Y.; Du, X.; Ji, J.; Gao, P.; Zhang, L.; Sun, Z. Tailoring of ferroelectrics in (Na2O, K2O)-Nb2O5-SiO2 glass-ceramics via control the crystallization kinetics. Chem. Eng. J. 2021, 422, 130027. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Jiang, T.; Zhai, J.; Shen, B. Effect of phase structures on dielectric properties and energy storage performances in Na2O-BaO-PbO-Nb2O5-SiO2-Al2O3 glass-ceramics. Ceram. Int. 2018, 44, 23109–23115. [Google Scholar] [CrossRef]
- Cheng, S.; Zhou, Y.; Li, Y.; Yuan, C.; Yang, M.; Fu, J.; Li, Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 2021, 42, 445–453. [Google Scholar] [CrossRef]
- Yin, P.; Xie, P.; Tang, Q.; He, Q.; Wei, S.; Fan, R.; Shi, Z. Enhanced dielectric energy storage properties in linear/nonlinear composites with hybrid-core satellite C/SiO2@TiO2 nanoparticles. Appl. Phys. Lett. 2023, 122, 132905. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Z.; Zhao, Y.; Liu, Z.; Pang, H.; Dang, Z.M. Unifying and suppressing conduction losses of polymer dielectrics for superior high-temperature capacitive energy storage. Adv. Mater. 2024, 36, 2309640. [Google Scholar] [CrossRef]
- Dong, J.; Li, L.; Qiu, P.; Pan, Y.; Niu, Y.; Sun, L.; Wang, H. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 2023, 35, 2211487. [Google Scholar] [CrossRef]
- Fang, R.; Xu, R.; Zhang, L.; Sun, X.; Wang, Y.; Zhang, X.; Zhao, L. Polarization structural design in core–shell fillers: An approach to significantly enhance the energy storage properties of BST/PVDF composite films. ACS Appl. Electron. Mater. 2022, 4, 2534–2544. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Sun, S. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155. [Google Scholar] [CrossRef]
- Xie, A.; Fu, J.; Zuo, R.; Jiang, X.; Li, T.; Fu, Z.; Zhang, S. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors. Adv. Mater. 2022, 34, 2204356. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Bai, H.; Ge, G.; Lin, J.; Sh, C.; Zhu, K.; Zhang, S. Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance. Small 2022, 18, 2106515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Li, M.D.; Tang, Z.H.; Tang, X.G. Enhanced energy storage density and efficiency in lead-free Bi(Mg1/2Hf1/2)O3-modified BaTiO3 ceramics. Chem. Eng. J. 2021, 418, 129379. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Lin, L.; Bai, W.; Wu, S.; Zheng, P.; Zhai, J. Superior energy storage capability and stability in lead-free relaxors for dielectric capacitors utilizing nanoscale polarization heterogeneous regions. Small 2023, 19, 2206662. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Li, J.H.T.; Zhu, F.; Tian, W.; Liu, X. Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. 2022, 5, 3436–3446. [Google Scholar] [CrossRef]
- Joseph, J.; Cheng, Z.; Zhang, S. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications. J. Mater. 2022, 8, 731–738. [Google Scholar] [CrossRef]
- Li, D.; Xu, D.; Zhao, W.; Avdeev, M.; Jing, H.; Guo, Y.; Zhou, D. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor. Energy Environ. Sci. 2023, 16, 4511–4521. [Google Scholar] [CrossRef]
- Ding, Y.; Que, W.; He, J.; Bai, W.; Zheng, P.; Li, P.; Zhai, J. Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. J. Eur. Ceram. Soc. 2022, 42, 129–139. [Google Scholar] [CrossRef]
- Ding, Y.; Li, P.; He, J.; Que, W.; Bai, W.; Zheng, P.; Zhai, J. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos. Part B Eng. 2022, 230, 109493. [Google Scholar] [CrossRef]
Ta Content | x = 0.0 | x = 1.0 | x = 2.0 | x = 4.0 | x = 8.0 |
---|---|---|---|---|---|
Space group | P4bm | P4bm | P4bm | P4/mbm | P4/mbm |
a (Å) | 12.52019 | 12.520752 | 12.517999 | 12.509094 | 12.50440 |
b (Å) | 12.52019 | 12.520752 | 12.517999 | 12.509294 | 12.50440 |
c (Å) | 3.95194 | 3.949690 | 3.950870 | 3.947899 | 3.946172 |
c/a | 0.315645 | 0.315451 | 0.315615 | 0.315597 | 0.315583 |
Rp (%) | 3.45 | 3.39 | 3.52 | 4.13 | 4.06 |
Rwp (%) | 4.32 | 4.32 | 4.42 | 5.25 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Shang, F.; Qin, Y.; Chen, G. Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals 2025, 15, 444. https://doi.org/10.3390/cryst15050444
Gao K, Shang F, Qin Y, Chen G. Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals. 2025; 15(5):444. https://doi.org/10.3390/cryst15050444
Chicago/Turabian StyleGao, Kexin, Fei Shang, Yaoyi Qin, and Guohua Chen. 2025. "Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy" Crystals 15, no. 5: 444. https://doi.org/10.3390/cryst15050444
APA StyleGao, K., Shang, F., Qin, Y., & Chen, G. (2025). Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals, 15(5), 444. https://doi.org/10.3390/cryst15050444