Luminescence and Scintillation Properties of YAl3(BO3)4 Single Crystal for Thermal Neutron Detection
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Eijk, C.W.E.; Bessière, A.; Dorenbos, P. Inorganic thermal-neutron scintillators. Nucl. Instrum. Meth. A 2004, 529, 260–267. [Google Scholar] [CrossRef]
- Kouzes, R.T.; Ely, J.H.; Erikson, L.E.; Kernan, W.J.; Lintereur, A.T.; Siciliano, E.R.; Stephens, D.L.; Stromswold, D.C.; Ginhoven, R.M.V.; Woodring, M.L. Neutron detection alternatives to 3He for national security applications. Nucl. Instrum. Meth. A 2010, 623, 1035–1045. [Google Scholar] [CrossRef]
- Trombetta, D.M.; Klintefjord, M.; Axell, K.; Cederwall, B. Fast neutron and γ-ray coincidence detection for nuclear security and safeguards applications. Nucl. Instrum. Meth. A 2019, 927, 119–124. [Google Scholar] [CrossRef]
- Piscitelli, F.; Mauri, G.; Laloni, A.; Hall-Wilton, R. Verification of He-3 proportional counters’ fast neutron sensitivity through a comparison with He-4 detectors. Eur. Phys. J. Plus 2020, 135, 577. [Google Scholar] [CrossRef]
- Pozzi, S.; Clarke, S.; Paff, M.; Di Fulvio, A.; Kouzes, R. Comparative neutron detection efficiency in He-3 proportional counters and liquid scintillators. Nucl. Instrum. Meth. A 2019, 929, 107–112. [Google Scholar] [CrossRef]
- Nelson, K.A.; Bellinger, S.L.; Montag, B.W.; Neihart, J.L.; Riedel, T.A.; Schmidt, A.J.; McGregor, D.S. Investigation of a lithium foil multi-wire proportional counter for potential 3He replacement. Nucl. Instrum. Meth. A 2012, 669, 79–84. [Google Scholar] [CrossRef]
- Murray, R. Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl. Instrum. 1958, 2, 237–248. [Google Scholar] [CrossRef]
- Firk, F.W.K.; Slaughter, G.G.; Ginther, R.J. Improved Li6-Loaded Glass Scintillator for Neutron Detection. Nucl. Instrum. Methods 1961, 13, 313–316. [Google Scholar] [CrossRef]
- Knitel, M.J.; Dorenbos, P.; de Haas, J.T.M.; van Eijk, C.W.E. LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination. Nucl. Instrum. Methods Phys. Res. A 1996, 374, 197–201. [Google Scholar] [CrossRef]
- Yanagida, T.; Kawaguchi, N.; Fujimoto, Y.; Fukuda, K.; Yokota, Y.; Yamazaki, A.; Watanabe, K.; Pejchal, J.; Uritani, A.; Iguchi, T.; et al. Basic study of Europium doped LiCaAlF6 scintillator and its capability for thermal neutron imaging application. Opt. Mater. 2011, 33, 1243–1247. [Google Scholar] [CrossRef]
- Iwanowska, J.; Swiderski, L.; Moszynski, M.; Yanagida, T.; Yokota, Y.; Yoshikawa, A.; Fukuda, K.; Kawaguchi, N.; Ishizu, S. Thermal neutron detection with Ce3+ doped LiCaAlF6 single crystals. Nucl. Instrum. Meth. A 2011, 652, 319–322. [Google Scholar] [CrossRef]
- Yanagida, T.; Kawaguchi, N.; Fujimoto, Y.; Fukuda, K.; Watanabe, K.; Yamazaki, A.; Uritani, A. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic. J. Lumin. 2013, 144, 212–216. [Google Scholar] [CrossRef]
- Trojan-Piegza, J.; Glodo, J.; Sarin, V.K. CaF2(Eu2+):LiF—Structural and spectroscopic properties of a new system for neutron detection. Radiat. Meas. 2010, 45, 163–167. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Kamada, K.; Yanagida, T.; Kawaguchi, N.; Kurosawa, S.; Totsuk, D.; Fukuda, K.; Watanabe, K.; Yamazaki, A.; Yokota, Y.; et al. Lithium Aluminate Crystals as Scintillator for Thermal Neutron Detection. IEEE Trans. Nucl. Sci. 2012, 59, 2252–2255. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Koshimizu, M.; Kawano, N.; Okada, G.; Kawaguchi, N. Comparative Studies of Optical and Scintillation Properties between LiGaO2 and LiAlO2 Crystals. J. Phys. Soc. Jpn. 2017, 86, 094201. [Google Scholar] [CrossRef]
- Bessiere, A.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Luminescence and scintillation properties of Cs2LiYCl6:Ce for γ and neutron detection. Nucl. Instrum. Methods Phys. Res. A 2005, 537, 242–246. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K. Tl2LiYCl6: Large Diameter, High Performing Dual Mode Scintillator. Cryst. Growth Des. 2017, 17, 3960–3964. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Kawano, N.; Okada, G.; Yanagida, T. Luminescence and Scintillation Properties of LiF:W Single Crystal for Thermal-Neutron Detection. Sens. Mater. 2017, 29, 1431–1438. [Google Scholar]
- Song, Z.; Wang, J.; Tong, Y.; Zhang, Y.; Wang, Q.; Wang, C.; Ren, G.; Sun, X.; Wu, Y. Enhancement of alpha/beta ratio in NaI:Tl,6Li neutron-gamma scintillators by rare earth co-doping. Nucl. Instrum. Methods Phys. Res. A 2024, 1064, 169451. [Google Scholar] [CrossRef]
- Xie, A.; Hettiarachchi, C.; Maddalena, F.; Witkowski, M.E.; Makowski, M.; Drozdowski, W.; Arramel, A.; Wee, A.T.S.; Springham, S.V.; Vuong, P.Q.; et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 2020, 1, 37. [Google Scholar] [CrossRef]
- Quang, N.D.; Vuong, P.Q.; Luan, N.T.; Truc, L.T.; Ton, N.D.; Kang, S.; Park, H.; Nam, U.-W.; Park, W.-K.; Sohn, J.; et al. Growth and characterization of 6LiI:Ag crystal scintillators for thermal and epithermal neutron detection on the lunar surface. J. Cryst. Growth 2024, 635, 127692. [Google Scholar] [CrossRef]
- Yuan, D.; Víllora, E.G.; Kawaguchi, N.; Nakauchi, D.; Kato, T.; Yanagida, T.; Shimamura, K. Thermal neutron scintillation improvement in Ce:Li6Y(BO3)3 single crystals by thermal treatment. Jpn. J. Appl. Phys. 2023, 62, 010614. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Wang, Z.; Sun, X.; Nikl, M.; OuYang, X.; Wu, Y. Achieving Efficient Neutron and Gamma Discrimination in a Highly Stable 6Li-Loaded Cs3Cu2I5 Perovskite Scintillator. J. Phys. Chem. Lett. 2022, 13, 9066–9071. [Google Scholar] [CrossRef]
- Nasir, R.; Aziz, F.; Mirza, S.M.; Mirza, N.M. Experimental and theoretical study of BF3 detector response for thermal neutrons in reflecting materials. Nucl. Eng. Technol 2018, 50, 439–445. [Google Scholar] [CrossRef]
- Amaro, F.D.; Monteiro, C.M.B.; dos Santos, J.M.F.; Antognini, A. Novel concept for neutron detection: Proportional counter filled with 10B nanoparticle aerosol. Sci. Rep. 2017, 7, 41699. [Google Scholar] [CrossRef] [PubMed]
- Ballman, A.A. A new series of synthetic borates isostructural with the carbonate mineral huntite. Am. Mineral. 1962, 47, 1380–1383. [Google Scholar]
- Mills, A.D. Crystallographic Data for New Rare Earth Borate Compounds, RX3(BO3)4. Inorg. Chem. 1962, 1, 960–961. [Google Scholar] [CrossRef]
- Fan, M.; Wu, G.; Chen, F.; Yu, F.; Cheng, X.; Zhao, X. Electro-elastic features of Nd-doped YAl3(BO3)4 single crystal. Cryst. Eng. Comm. 2020, 22, 7816–7825. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Cheng, X.; Hu, X.; Burns, P.; Dawes, J. Thermal and laser properties of Yb:YAl3(BO3)4 crystal. J. Cryst. Growth 2003, 250, 458–462. [Google Scholar] [CrossRef]
- Yokosawa, N.; Suzuki, K.; Nakazawa, E. Vacuum ultraviolet excitation processes of YAl3(BO3)4: R (R = Eu3+, Gd3+ and Tb3+). Jpn. J. Appl. Phys. 2003, 42, 5656–5659. [Google Scholar] [CrossRef]
- Yoshida, H.; Yoshimatsu, R.; Watanabe, S.; Ogasawara, K. Optical Transitions near the Fundamental Absorption Edge and Electronic Structures of YAl3(BO3)4:Gd3+. Jpn. J. Appl. Phys. 2006, 45, 146–151. [Google Scholar] [CrossRef]
- Cavalli, E.; Bovero, E.; Magnani, N.; Ramirez, M.O.; Speghini, A.; Bettinelli, M. Optical spectroscopy and crystal-field analysis of YAl3(BO3)4 single crystals doped with dysprosium. J. Phys. Condens. Matter 2003, 15, 1047–1056. [Google Scholar] [CrossRef]
- Dominiak-Dzik, G.; Ryba-Romanowski, W.; Kovács, L.; Beregi, E. Effect of temperature on luminescence and VUV to visible conversion in the YAl3(BO3)4:Dy3+ (YAB:Dy) crystal. Radiat. Meas. 2004, 38, 557–561. [Google Scholar] [CrossRef]
- Bartl, M.H.; Gatterer, K.; Cavalli, E.; Speghini, A.; Bettinelli, M. Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium. Spectrochim. Acta Part A 2001, 57, 1981–1990. [Google Scholar] [CrossRef]
- Aloui-Lebbou, O.; Goutaudier, C.; Kubota, S.; Dujardin, C.; Cohen-Adad, M.T.; Pédrini, C.; Florian, P.; Massiot, D. Structural and scintillation properties of new Ce3+-doped alumino-borate. Opt. Mater. 2001, 16, 77–86. [Google Scholar] [CrossRef]
- Feofilov, S.; Zhou, Y.; Jeong, J.; Keszler, D.; Meltzer, R. Energy transfer from the host excitations to Ce3+ ions in scandium borate. J. Lumin. 2007, 125, 80–84. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Yoshikawa, A. Growth and characterization of strontium metaborate scintillators. Opt. Mater. 2011, 34, 444–447. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, M.; Yoshikawa, A. Crystal growth and characterization of calcium metaborate scintillators. Nucl. Instrum. Methods Phys. Res. A 2013, 703, 7–10. [Google Scholar] [CrossRef]
- Yanagida, T.; Kimura, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N. Photoluminescence and scintillation characteristics of b-BaB2O4 single crystal. Jpn. J. Appl. Phys. 2020, 59, 102004. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Okada, G.; Futami, Y.; Nakauchi, D.; Kato, T.; Yanagida, T. Scintillation and Dosimetric Properties of Monocrystalline and Polycrystalline Li2B4O7. Sens. Mater. 2020, 32, 1419–1426. [Google Scholar] [CrossRef]
- Fukui, K.; Miura, H.; Nakagawa, H.; Shimoyama, I.; Nakagawa, K.; Okamura, H.; Nanba, T.; Hasumoto, M.; Kinoshita, T. Performance of IR-VUV normal incidence monochromator beamline at UVSOR. Nucl. Instrum. Methods Phys. Res. A 2001, 467–468, 601–604. [Google Scholar] [CrossRef]
- Koshimizu, M.; Onodera, K.; Nishikido, F.; Haruki, R.; Shibuya, K.; Kishimoto, S.; Asai, K. X-ray detection capability of a BaCl2 single crystal scintillator. J. Appl. Phys. 2012, 111, 024906. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Yagi, H.; Yanagitani, T. Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations. Opt. Mater. 2014, 36, 1044–1048. [Google Scholar] [CrossRef]
- Moszyixki, M.; Kapusta, M.; Mayhugh, M.; Wolski, D.; Flyckt, S.O. Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 1997, 44, 1052–1061. [Google Scholar] [CrossRef]
- van Eijk, C.W.E. Inorganic Scintillators for Thermal Neutron Detection. Rad. Meas. 2004, 38, 337–342. [Google Scholar] [CrossRef]
- Yu, X.; Yue, Y.; Yao, J.; Hu, Z.-G. YAl3(BO3)4: Crystal growth and characterization. J. Cryst. Growth 2010, 312, 3029–3033. [Google Scholar] [CrossRef]
- Yoshida, H.; Fujikawa, K.; Toyoshima, H.; Watanabe, S.; Ogasawara, K. Luminescence properties of YAl3(BO3)4 substituted with Sc3+ ions. Phys. Stat. Sol. A 2006, 203, 2701–2704. [Google Scholar] [CrossRef]
- Koshimizu, M.; Saeki, K.; Fujimoto, Y.; Okada, G.; Yanagida, T.; Yamashita, S.; Asai, K. A three-state model for describing the temperature variation of the scintillation properties of Cs2HfCl6. Jpn. J. Appl. Phys. 2018, 57, 032401. [Google Scholar] [CrossRef]
- Wolszczak, W.W.; Dorenbos, P. Nonproportional Response of Scintillators to Alpha Particle Excitation. IEEE Trans. Nucl. Sci. 2017, 64, 1580–1591. [Google Scholar]
- Fawad, U.; Rooh, G.; Kim, H.J.; Park, H.; Kim, S.; Khan, S. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal. J. Cryst. Growth 2015, 410, 18–22. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Kurosawa, S.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Yokota, Y.; Yoshikawa, A. Characterizations of Ce3+-Doped CaB2O4 Crystalline Scintillator. Cryst. Growth Des. 2012, 12, 142–146. [Google Scholar] [CrossRef]
Borate Scintillator | Scintillation Wavelength [nm] | Light Yield [ph/nth] |
---|---|---|
CaB2O4 | 300–400 | 3200 |
SrB2O4 | 300, 375 | 1500 |
CaB2O4:Ce (0.5%) | 300, 375 | 2200 |
SrB2O4:Ce (0.5%) | 300–400 | 1000 |
YAl3(BO3)4 | 317, 370 | 2700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimoto, Y.; Koshimizu, M.; Kawamoto, H.; Watanabe, K.; Miyamoto, A.; Asai, K. Luminescence and Scintillation Properties of YAl3(BO3)4 Single Crystal for Thermal Neutron Detection. Crystals 2025, 15, 357. https://doi.org/10.3390/cryst15040357
Fujimoto Y, Koshimizu M, Kawamoto H, Watanabe K, Miyamoto A, Asai K. Luminescence and Scintillation Properties of YAl3(BO3)4 Single Crystal for Thermal Neutron Detection. Crystals. 2025; 15(4):357. https://doi.org/10.3390/cryst15040357
Chicago/Turabian StyleFujimoto, Yutaka, Masanori Koshimizu, Hiroki Kawamoto, Kenichi Watanabe, Akio Miyamoto, and Keisuke Asai. 2025. "Luminescence and Scintillation Properties of YAl3(BO3)4 Single Crystal for Thermal Neutron Detection" Crystals 15, no. 4: 357. https://doi.org/10.3390/cryst15040357
APA StyleFujimoto, Y., Koshimizu, M., Kawamoto, H., Watanabe, K., Miyamoto, A., & Asai, K. (2025). Luminescence and Scintillation Properties of YAl3(BO3)4 Single Crystal for Thermal Neutron Detection. Crystals, 15(4), 357. https://doi.org/10.3390/cryst15040357