Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology
Abstract
:1. Introduction
2. Properties of Fly Ash and Its Modification Methods
2.1. Properties of Fly Ash
2.2. Modification Methods of Fly Ash
2.2.1. Physical Modification
2.2.2. Chemical Modification
3. Fly Ash Supported Photocatalytic Materials
Items | Band Gap/eV | Advantages | Disadvantages |
---|---|---|---|
TiO2 | 3.2 | Good chemical stability; strong anti-corrosion ability | Only responds to ultraviolet light; high recombination rate of photogenerated carriers |
ZnO | 3.2 | Good chemical stability; strong anti-corrosion ability | Only responds to ultraviolet light; high recombination rate of photogenerated carriers |
BiOF | 3.6 | Has a special stable crystal structure; has visible light response performance; high photocatalytic activity | The energy of visible light is low; high recombination rate of photogenerated carriers |
BiOCl | 3.5 | Good chemical stability; has high-value visible light response performance; has photocatalytic activity | High recombination rate of photogenerated carriers; low photocatalytic activity |
BiOBr | 2.6 | Has good chemical stability; has visible light response performance | High recombination rate of photogenerated carriers |
BiOI | 1.8–1.9 | Good chemical stability; alkaline; acid-resistant; non-toxic and harmless; no heavy metal pollution | High recombination rate of photogenerated carriers |
α-Fe2O3 | 2.0–2.2 | Has good chemical stability; simple preparation method | Low specific surface area; low visible light utilization rate |
g-C3N4 | 2.7 | Has good chemical stability; has visible light response performance | High recombination rate of photo-generated carriers; low specific surface area is low; low utilization rate of visible light |
3.1. Overview of Photocatalytic Technology
3.1.1. Mechanism of Photocatalytic Degradation
3.1.2. Common Photocatalytic Materials
3.2. Preparation Methods of Fly Ash-Supported Photocatalytic Materials
3.2.1. Sol–Gel Method
3.2.2. Hydrothermal Method
3.2.3. Liquid-Phase Precipitation Method
4. Application of Fly Ash-Supported Photocatalytic Materials
4.1. Degradation of Pollutants in Water
4.2. Degradation of Atmospheric Pollutants
4.2.1. Photocatalytic Degradation of NOx
4.2.2. Photocatalytic Degradation of Volatile Organic Compounds (VOCs)
4.3. Self-Cleaning Properties
4.4. CO2 Reduction Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, Z.; Wen, S.; Sun, Z. Current Relationship between Coal Consumption and the Economic Development and China’s Future Carbon Mitigation Policies. Energy Policy 2022, 162, 112812. [Google Scholar] [CrossRef]
- Chen, X.-F.; Jiao, C.-J. A Photocatalytic Mortar Prepared by Tourmaline and TiO2 Treated Recycled Aggregates and Its Air-Purifying Performance. Case Stud. Constr. Mater. 2022, 16, e01073. [Google Scholar] [CrossRef]
- Chen, X.-F.; Lin, S.-R.; Kou, S.-C. Effect of Composite Photo-Catalysts Prepared with Recycled Clay Brick Sands and Nano-TiO2 on Methyl Orange and NOx Removal. Constr. Build. Mater. 2018, 171, 152–160. [Google Scholar] [CrossRef]
- Ahmed, E.-S.A.E.; El-Sayed, B.A.; Mohamed, W.A.A.; Fahmy, A.; Helal, A. Recycling of Supported Nanocomposites for Hazardous Industrial Wastewater Treatment via Solar Photocatalytic Process. Egypt. J. Pet. 2021, 30, 29–35. [Google Scholar] [CrossRef]
- Wang, C.; Xu, G.; Gu, X.; Gao, Y.; Zhao, P. High Value-Added Applications of Coal Fly Ash in the Form of Porous Materials: A Review. Ceram. Int. 2021, 47, 22302–22315. [Google Scholar] [CrossRef]
- Sarbak, Z.; Kramer-Wachowiak, M. Porous Structure of Waste Fly Ashes and Their Chemical Modifications. Powder Technol. 2002, 123, 53–58. [Google Scholar] [CrossRef]
- Humayun, M.; Wang, C.; Luo, W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods 2022, 6, 2101395. [Google Scholar] [CrossRef]
- Paumo, H.K.; Tufa, L.T.; Gicha, B.B.; Molla, C.F.; Nguyen, H.; Tran, V.T.; Nwaji, N.; Hu, X.; Chen, H.; Lee, J. Plasmon-Enhanced Photo/Electrocatalysis: Harnessing Hetero-Nanostructures for Sustainable Energy and Environmental Applications. Appl. Phys. Rev. 2024, 11, 041336. [Google Scholar] [CrossRef]
- Mathapati, M.; Amate, K.; Durga Prasad, C.; Jayavardhana, M.L.; Hemanth Raju, T. A Review on Fly Ash Utilization. Mater. Today Proc. 2022, 50, 1535–1540. [Google Scholar] [CrossRef]
- Chen, X.-F.; Quan, C.-Q.; Jiao, C.-J. Experimental Study of Chloride Resistance of Polypropylene Fiber Reinforced Concrete with Fly Ash and Modeling. Materials 2021, 14, 4417. [Google Scholar] [CrossRef]
- Wang, D.; Shen, X.; Wang, Z.; Zhang, X.; Chen, X.-F. Effect of Quicklime Substitution for Cement on the Physical and Mechanical Properties of Autoclaved Fly Ash Aggregates via Hydrothermal Synthesis. Materials 2025, 18, 707. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Song, H.; Fan, Z. Research progress of fly ash in anticorrosive coatings. Prog. Chem. Ind. 2023, 42, 4894–4904. [Google Scholar]
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.S.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and Similarities in Structural, Chemical, and Elemental Properties on the Ashes Derived from the Coal Due to Their Combustion in Open and Controlled Manner. Environ. Sci. Pollut. Res. 2021, 28, 32609–32625. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Ran, J.; Lin, H.; Kang, W.; Zhu, J. Research Progress on the Performance of Circulating Fluidized Bed Combustion Ash and Its Utilization in China. J. Build. Eng. 2022, 52, 104350. [Google Scholar] [CrossRef]
- Hussain, Z.; Chang, N.; Sun, J.; Xiang, S.; Ayaz, T.; Zhang, H.; Wang, H. Modification of Coal Fly Ash and Its Use as Low-Cost Adsorbent for the Removal of Directive, Acid and Reactive Dyes. J. Hazard. Mater. 2022, 422, 126778. [Google Scholar] [CrossRef]
- Orczykowski, W.; Bieliński, D.M.; Anyszka, R.; Pędzich, Z. Fly Ash from Lignite Combustion as a Filler for Rubber Mixes. Part I: Physical Valorization of Fly Ash. Materials 2022, 15, 4869. [Google Scholar] [CrossRef]
- Deng, X.; Qi, L.; Zhang, Y. Experimental Study on Adsorption of Hexavalent Chromium with Microwave-Assisted Alkali Modified Fly Ash. Water Air Soil Pollut. 2018, 229, 18. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A Review of Photocatalysis, Basic Principles, Processes, and Materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Ganose, A.M.; Cuff, M.; Butler, K.T.; Walsh, A.; Scanlon, D.O. Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Q.; Wang, W.; Li, Y.; Zhai, J. Preparation and Characterization of Fe3+-Doped TiO2 on Fly Ash Cenospheres for Photocatalytic Application. Appl. Surf. Sci. 2011, 257, 3473–3479. [Google Scholar] [CrossRef]
- Chen, X.-F.; Jiao, C.-J. Effect of Physical Properties of Construction Wastes Based Composite Photocatalysts on the Sulfur Dioxide Degradation: Experimental Investigation and Mechanism Analysis. Case Stud. Constr. Mater. 2022, 17, e01237. [Google Scholar] [CrossRef]
- Özcan, M.; Birol, B.; Kaya, F. Investigation of Photocatalytic Properties of TiO2 Nanoparticle Coating on Fly Ash and Red Mud Based Porous Ceramic Substrate. Ceram. Int. 2021, 47, 24270–24280. [Google Scholar] [CrossRef]
- Lin, L.; Huang, M.; Chen, D. BiOBr/BiOI Photocatalyst Based on Fly Ash Cenospheres with Improved Photocatalytic Performance. Molecules 2016, 21, 666. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W.; Lin, W.; Zheng, J.; Yan, G.; Chen, X. Enhanced Photocatalytic Activity in Photocatalytic Concrete: Synthesis, Characterization, and Comprehensive Performance Assessment of Nano-TiO2-Modified Recycled Aggregates. Catalysts 2024, 14, 711. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X.W.D. Assembling Carbon-Coated α-Fe2O3 Hollow Nanohorns on the CNT Backbone for Superior Lithium Storage Capability. Energy Environ. Sci. 2012, 5, 5252–5256. [Google Scholar] [CrossRef]
- Chen, X.-F.; Chen, W.-Z.; Zhang, X.-C.; Lin, W.-C.; Zheng, J.-S.; Yan, G.-H. Nano-TiO2-Enhanced Surface Functionalization of Recycled Concrete Aggregates for Improved Degradation Efficiency of Low-Concentration Sulfur Dioxide. Catalysts 2024, 14, 709. [Google Scholar] [CrossRef]
- Nadeem, N.; Yaseen, M.; Rehan, Z.A.; Zahid, M.; Shakoor, R.A.; Jilani, A.; Iqbal, J.; Rasul, S.; Shahid, I. Coal Fly Ash Supported CoFe2O4 Nanocomposites: Synergetic Fenton-like and Photocatalytic Degradation of Methylene Blue. Environ. Res. 2022, 206, 112280. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Liu, Y.; Dou, Z.; Zhang, T. Summary of Research Progress on Industrial Flue Gas Desulfurization Technology. Sep. Purif. Technol. 2022, 281, 119849. [Google Scholar] [CrossRef]
- Shi, T.; Hao, X.; Ma, J.; Liu, H.; Gai, G.; Zhang, Y. Preparation of Ag2O/TiO2/Fly-Ash Cenospheres Composite Photocatalyst. Mater. Lett. 2016, 183, 444–447. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, W.; Huo, P.; Luo, Y.; He, M.; Pan, J.; Li, C.; Yan, Y. Performance of a Novel TiO2 Photocatalyst Based on the Magnetic Floating Fly-Ash Cenospheres for the Purpose of Treating Waste by Waste. Chem. Eng. J. 2013, 225, 34–42. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10, 8070. [Google Scholar] [CrossRef]
- Yang, L.; Wang, F.; Hakki, A.; Macphee, D.E.; Liu, P.; Hu, S. The Influence of Zeolites Fly Ash Bead/TiO2 Composite Material Surface Morphologies on Their Adsorption and Photocatalytic Performance. Appl. Surf. Sci. 2017, 392, 687–696. [Google Scholar] [CrossRef]
- Chen, X.-F.; Kou, S.-C. Sulfur Dioxide Degradation by Composite Photocatalysts Prepared by Recycled Fine Aggregates and Nanoscale Titanium Dioxide. Nanomaterials 2019, 9, 1533. [Google Scholar] [CrossRef]
- Chen, X.-F.; Jiao, C.-J. Effect of Construction Wastes on the Rheo-Physical Behavior of Photocatalytic Mortar. Case Stud. Constr. Mater. 2022, 16, e01049. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, P.-Y.; Lin, T.-H.; Lin, T.-F. Photocatalytic Performance of Cu-Doped TiO2 Nanofibers Treated by the Hydrothermal Synthesis and Air-Thermal Treatment. Appl. Surf. Sci. 2018, 430, 390–398. [Google Scholar] [CrossRef]
- Patil, B.P.; Jayaram, R. V Photocatalytic Degradation of Reactive Dyes Using Flyash Supported Ag-TiO2 Photocatalysts. ChemistrySelect 2022, 7, e202104183. [Google Scholar] [CrossRef]
- Chuaicham, C.; Inoue, T.; Balakumar, V.; Tian, Q.; Ohtani, B.; Sasaki, K. Visible Light-Driven ZnCr Double Layer Oxide Photocatalyst Composites with Fly Ashes for the Degradation of Ciprofloxacin. J. Environ. Chem. Eng. 2022, 10, 106970. [Google Scholar] [CrossRef]
- Kanakaraju, D.; bin Ya, M.H.; Lim, Y.-C.; Pace, A. Combined Adsorption/Photocatalytic Dye Removal by Copper-Titania-Fly Ash Composite. Surf. Interfaces 2020, 19, 100534. [Google Scholar] [CrossRef]
- Antenozio, M.L.; Caissutti, C.; Caporusso, F.M.; Marzi, D.; Brunetti, P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. Plants 2024, 13, 2027. [Google Scholar] [CrossRef]
- Supelano García, I.; Palacio Gómez, C.A.; Weber, M.H.; Saavedra Gaona, I.M.; Castañeda Martínez, C.P.; Martínez Zambrano, J.J.; Rojas Sarmiento, H.A.; Munevar Cagigas, J.A.; Avila, M.A.; Rettori, C.; et al. Physicochemical Properties of Ti3+ Self-Doped TiO2 Loaded on Recycled Fly-Ash Based Zeolites for Degradation of Methyl Orange. Condens. Matter 2022, 7, 69. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.S. Photocatalytic NOx Degradation of Concrete Surface Layers Intermixed and Spray-Coated with Nano-TiO2: Influence of Experimental Factors. Cem. Concr. Compos. 2017, 83, 279–289. [Google Scholar] [CrossRef]
- Xu, M.; Clack, H.; Xia, T.; Bao, Y.; Wu, K.; Shi, H.; Li, V. Effect of TiO2 and Fly Ash on Photocatalytic NOx Abatement of Engineered Cementitious Composites. Constr. Build. Mater. 2020, 236, 117559. [Google Scholar] [CrossRef]
- Xue, J.; Shi, L.; Wang, P.; Cheng, W.; Long, M.; Sheng, M.; Bi, Q. Efficient Degradation of VOCs Using Semi-Coke Activated Carbon Loaded 2D Z-Scheme g-C3N4-Bi2WO6 Photocatalysts Composites under Visible Light Irradiation. Sep. Purif. Technol. 2023, 305, 122535. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, K.; Zhang, Q.; Cao, X.; Wu, S.; Su, J. Self-Assembly TiO2-RGO/LDHs Nanocomposite: Photocatalysis of VOCs Degradation in Simulation Air. Appl. Surf. Sci. 2022, 586, 152882. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase—A Review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Thirumalai, K.; Balachandran, S.; Swaminathan, M. Superior Photocatalytic, Electrocatalytic, and Self-Cleaning Applications of Fly Ash Supported ZnO Nanorods. Mater. Chem. Phys. 2016, 183, 191–200. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M.; Cantú-Castro, L.V.F. Self-Cleaning Coatings Based on Fly Ash and Bismuth-Photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4. Constr. Build. Mater. 2019, 220, 206–213. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Chen, W.-Z. Advanced Predictive Modeling of Concrete Compressive Strength and Slump Characteristics: A Comparative Evaluation of BPNN, SVM, and RF Models Optimized via PSO. Materials 2024, 17, 4791. [Google Scholar] [CrossRef]
- Guo, J.; Fan, Y.; Qiao, C.; Ma, X.; Dong, X.; Zeng, H. Harnessing Coal and Coal Waste for Environmental Conservation: A Review of Photocatalytic Materials. Sci. Total Environ. 2024, 946, 174437. [Google Scholar] [CrossRef]
- Vega-Mendoza, M.S.; Luévano-Hipólito, E.; Torres-Martínez, L.M. Design and Fabrication of Photocatalytic Coatings with α/β-Bi2O3 and Recycled-Fly Ash for Environmental Remediation and Solar Fuel Generation. Ceram. Int. 2021, 47, 26907–26918. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Bi, Z.; Chen, X.; Hu, X.; Pan, W. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO2 Reduction. Small 2023, 19, 2206314. [Google Scholar] [CrossRef] [PubMed]
Parameters | Ranges | Average Values |
---|---|---|
Density/g·cm−3 | 1.9–2.9 | 2.1 |
Standard Consistency of Raw Ash/% | 27.3–66.7 | 48 |
Water Requirement/% | 89–130 | 106 |
28-day Compressive Strength Ratio/% | 37–85 | 66 |
Preparation Method | Photocatalytic Materials | Target Degradation Substances | Degradation Efficiency | Advantages and Disadvantages | Ref. |
---|---|---|---|---|---|
Sol-gel Method | Fe3⁺–TiO2/coal fly ash | Methylene Blue | The degradation rate increases by about 30% after adding coal fly ash. | The reaction is simple and easy to control; the reaction is uniform; the film is prone to cracking; easy to agglomerate. | [20] |
TiO2–magnetic Fe3O4/coal fly ash microspheres | Enrofloxacin Hydrochloride | 75.32% in 60 min. | [21,22] | ||
TiO2/coal fly ash porous ceramics | Methylene Blue | About 50% in 240 min. | |||
BiOBr–BiOI/coal fly ash | - | 99% in 70 min. | [23] | ||
Cu–TiO2/coal fly ash | Methyl Orange | 99.1% under visible light in 2 h; complete degradation under ultraviolet light. | [24] | ||
Hydrothermal Method | TiO2/coal fly ash beads | Rhodamine B | 99% in 90 min. | The sample has good properties (good crystallinity, small size, good dispersibility); the crystal form of particles can be controlled; high temperature and high pressure are required. | [25] |
ZnO/coal fly ash | Nitrogen Dye Active Orange 4, Rhodamine B, and Trypan Blue | 98% in 90 min. | [26] | ||
CoFe2O4/coal fly ash | Methylene Blue | 99% in 60 min. | [27] | ||
TiO2/coal fly ash-based X–zeolite | NO | 75% in 60 min. | [27] | ||
Liquid-phase Precipitation Method | ZnCr-layered double oxide/coal fly ash | Ciprofloxacin | 98% in 120 min. | The preparation method is simple; the sample composition is uniform. | [17] |
N, S co-doped TiO2/coal fly ash microspheres | Methyl Orange | 65% in 60 min. | [28] | ||
Ag2O–TiO2/FACs | Methylene Blue | 100% in 30 min. | [29] | ||
TiO2–Cu4S/coal fly ash | Methylene Blue | 99% in 360 min. |
Photocatalytic Materials | Light Source | Preparation Method | Target Degradation Substances and Degradation Efficiency | Ref. |
---|---|---|---|---|
PPy–TiO2/coal fly ash | Visible light | Sol–gel method | Methylene blue; 75% in 5 h, and still maintains about 70% after 4 cycles | [34] |
Cu–TiO2/coal fly ash | UV/Visible light | Sol–gel method | Methyl orange; 99.1% under visible light in 2 h, and complete degradation under UV light | [24] |
BiOBr–BiOI/coal fly ash | Blue LED light | Hydrothermal method | Rhodamine B; 99% in 70 min, and still reaches 90% after 5 cycles | [35] |
Ag–TiO2/coal fly ash | Visible light | Sol–gel method | Active dyes; 85–95% in 3–4 h | [36] |
TiO2/coal fly ash microspheres | Visible light | Hydrothermal method | Rhodamine B; 99% in 90 min | [26] |
ZnCr-layered double oxides/coal fly ash | Simulated sunlight | Simple precipitation method | Ciprofloxacin; 98% in 120 min | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-G.; Jiao, C.-J.; Zhang, X.-C.; Lin, W.-C.; Chen, X.-F. Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology. Crystals 2025, 15, 223. https://doi.org/10.3390/cryst15030223
Lu C-G, Jiao C-J, Zhang X-C, Lin W-C, Chen X-F. Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology. Crystals. 2025; 15(3):223. https://doi.org/10.3390/cryst15030223
Chicago/Turabian StyleLu, Cheng-Gong, Chu-Jie Jiao, Xiu-Cheng Zhang, Wen-Cong Lin, and Xue-Fei Chen. 2025. "Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology" Crystals 15, no. 3: 223. https://doi.org/10.3390/cryst15030223
APA StyleLu, C.-G., Jiao, C.-J., Zhang, X.-C., Lin, W.-C., & Chen, X.-F. (2025). Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology. Crystals, 15(3), 223. https://doi.org/10.3390/cryst15030223