Interactions Between Sc2O3 Ceramics and Calcium–Magnesium–Alumina–Silicate (CMAS) at Elevated Temperature
Abstract
1. Introduction
2. Experimental Design
2.1. Ceramic Samples and CMAS Preparation
2.2. Characterizations
3. Results and Discussion
3.1. Phase Analysis
3.2. Interactions of CMAS/Sc2O3
3.3. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, H.J.; Wang, W.Z.; Deng, S.J.; Yang, T.; Zhu, H.; Huang, J.B.; Ye, D.D.; Guo, X.P. Interaction between Yb2O3-Y2O3 co-stabilized ZrO2 ceramic powder and molten silicate deposition, and its implication on thermal barrier coating application. Mater. Charact. 2021, 180, 111418. [Google Scholar] [CrossRef]
- Darolia, R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. 2013, 58, 315–348. [Google Scholar] [CrossRef]
- Dai, J.W.; Huang, B.; He, L.M.; Mu, R.D.; Tian, H.; Xu, Z.H. Thermal cycling behavior and failure mechanism of Yb2O3-doped yttria-stabilized zirconia thermal barrier coatings. Mater. Today Commun. 2023, 34, 105–409. [Google Scholar] [CrossRef]
- Rai, A.K.; Schmitt, M.P.; Bhattacharya, R.S.; Zhu, D.M.; Wolfe, D.E. Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions. J. Eur. Ceram. Soc. 2015, 35, 1605–1612. [Google Scholar] [CrossRef]
- Jackson, R.W.; Zaleski, E.M.; Poerschke, D.L.; Hazel, B.T.; Begley, M.R.; Levi, C.G. Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta. Mater. 2015, 89, 396–407. [Google Scholar] [CrossRef]
- Naraparaju, R.; Chavez, J.J.G.; Schulz, U.; Ramana, C.V. Interaction and infiltration behavior of Eyjafjallajőkull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2O3 coating at high temperature. Acta. Mater. 2017, 136, 164–180. [Google Scholar] [CrossRef]
- Holgate, C.S.; Seward, G.G.E.; Ericks, A.R.; Poerschke, D.L.; Levi, C.G. Dissolution and diffusion kinetics of yttria-stabilized zirconia into molten silicates. J. Eur. Ceram. Soc. 2021, 41, 1984–1994. [Google Scholar] [CrossRef]
- Zhang, B.P.; Song, W.J.; Wei, L.L.; Xiu, Y.X.; Xu, H.B.; Dingwell, D.B.; Guo, H.B. Novel thermal barrier coatings repel and resist molten silicate deposits. Scr. Mater. 2019, 163, 71–76. [Google Scholar] [CrossRef]
- He, Y.X.; Xiao, G.Z.; Wang, C.; Lu, X.F.; Li, L.Y.; Liu, S.Y.; Wu, Y.S.; Wang, Z.J. Improved thermal properties and CMAS corrosion resistance of rare-earth monosilicates by adjusting the configuration entropy with RE-doping. Corros. Sci. 2024, 226, 111664. [Google Scholar] [CrossRef]
- Rai, A.K.; Bhattacharya, R.S.; Wolfe, D.E.; Eden, T.J. CMAS-resistant thermal barrier coatings (TBC). Int. J. Appl. Ceram. Technol. 2010, 7, 662–674. [Google Scholar] [CrossRef]
- Fang, H.J.; Wang, W.Z.; Huang, J.B.; Ye, D.D. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating. Corros. Sci. 2020, 173, 108764. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, H.; Shan, X.; Yang, F.; Guo, F.W.; Xiao, P.; Gong, S.K. A novel CMAS-resistant material based on thermodynamic equilibrium design: Apatite-type Gd10(SiO4)6O3. J. Am. Ceram. Soc. 2020, 103, 3401–3415. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ma, Z.; Liu, L.; Liu, Y.B. Reaction products of Sm2Zr2O7 with calcium–magnesium–aluminum–silicate (CMAS) and their evolution. J. Adv. Ceram. 2021, 10, 1389–1397. [Google Scholar] [CrossRef]
- Fan, W.; Wang, Z.Z.; Bai, Y.; Che, J.W.; Wang, R.J.; Ma, F.; Tao, W.Z.; Liang, G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. J. Eur. Ceram. Soc. 2018, 38, 4502–4511. [Google Scholar] [CrossRef]
- Fang, H.J.; Wang, W.Z.; Huang, J.B.; Li, Y.J.; Ye, D.D. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calciummagnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation. Corros. Sci. 2021, 128, 111418. [Google Scholar] [CrossRef]
- Ramachandran, C.S.; Balasubramaniana, V.; Ananthapadmanabhan, P.V. Thermal cycling behavior of plasma sprayed lanthanum zirconate based coatings under concurrent infiltration by a molten glass concoction. Ceram. Int. 2013, 39, 1413–1431. [Google Scholar]
- Gok, M.G.; Karabas, M. Production of Re doped La2Zr2O7 based TBCs and numerical analysis of their use on IC engine piston surface. Ceram. Int. 2022, 48, 11173–11180. [Google Scholar] [CrossRef]
- Dolmaire, A.; Béchade, E.; Geffroy, P.M.; Goutier, S.; Vardelle, M.; Vilasi, M.; Joulia, A. Reaction mechanisms of Gd2Zr2O7 in silicate melts derived from CAS. J. Eur. Ceram. Soc. 2022, 42, 7247–7257. [Google Scholar] [CrossRef]
- Bahamirian, M. Nanostructured Gd2Zr2O7: A promising thermal barrier coating with high resistance to CaO-MgO-Al2O3-SiO2 corrosion. J. Aust. Ceram. Soc. 2023, 59, 165–177. [Google Scholar] [CrossRef]
- Drexler, J.M.; Ortiz, A.L.; Padture, N.P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta. Mater. 2012, 60, 5437–5447. [Google Scholar] [CrossRef]
- Naraparaju, R.; Pubbysetty, R.P.; Mechnich, P.; Schulz, U. EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: Deposition and reaction mechanisms. J. Eur. Ceram. Soc. 2018, 38, 3333–3346. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Wei, L.L.; He, Q.; Deng, Y.P.; He, W.T.; Guo, H.B. PS–PVD alumina overlayer on thermal barrier coatings against CMAS attack. J. Therm. Spray Technol. 2021, 30, 864–872. [Google Scholar] [CrossRef]
- Liang, T.Q.; Huang, Z.H.; Li, M.H.; Xiao, W.T.; He, H.; He, A.P.; Chen, X.Y.; Luo, N.N. Thermochemical reaction behavior between Y2O3 and calcium-magnesium-aluminosilicate (CMAS) at elevated temperature. Corros Sci. 2022, 208, 110631. [Google Scholar] [CrossRef]
- Liu, H.; Cai, J.; Zhu, J.H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers. Ceram. Int. 2018, 44, 452–458. [Google Scholar] [CrossRef]
- Zhao, H.B.; Levi, C.G.; Wadley, H.N.G. Molten silicate interactions with thermal barrier coatings. Int. J. Appl. Ceram. Technol. 2014, 251, 74–86. [Google Scholar] [CrossRef]
- Tian, Z.L.; Zhang, J.; Zheng, L.Y.; Hu, W.P.; Ren, X.M.; Lei, Y.M. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 °C. Corros. Sci. 2019, 148, 281–292. [Google Scholar] [CrossRef]
- Tian, Z.L.; Ren, X.M.; Lei, Y.M.; Zheng, L.Y.; Geng, W.R.; Zhang, J. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J. Eur. Ceram. Soc. 2019, 39, 4245–4254. [Google Scholar] [CrossRef]
- Wei, L.L.; Guo, L.; Li, M.Z.; Guo, H.B. Calcium-magnesium-alumina-silicate (CMAS) resistant Ba2REAlO5 (RE = Yb, Er, Dy) ceramics for thermal barrier coatings. J. Eur. Ceram. Soc. 2018, 37, 4991–5000. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, C.L.; He, Q.; Yu, J.X.; Yan, Z.; Ye, F.X.; Dan, C.Y.; Ji, V. Microstructure evolution and hot corrosion mechanisms of Ba2REAlO5 (RE = Yb, Er, Dy) exposed to V2O5 + Na2SO4 molten salt. J. Eur. Ceram. Soc. 2018, 38, 3555–3563. [Google Scholar] [CrossRef]
- Guo, L.; Li, M.Z.; Yang, C.X.; Zhang, C.L.; Xu, L.M.; Ye, F.X.; Dan, C.Y.; Ji, V. Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln=La, Nd) for thermal barrier coating applications. Ceram. Int. 2017, 43, 10521–10527. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Sun, J.B.; Zhang, H.; Yang, X.; Qiu, F.Y.; Zhou, P.F.; Niu, W.B.; Dong, S.J.; Zhou, X.; Cao, X.Q. Lanthanum magnesium hexaluminate thermal barrier coatings with pre-implanted vertical microcracks: Thermal cycling lifetime and CMAS corrosion behavior. Ceram. Int. 2018, 44, 11472–11485. [Google Scholar] [CrossRef]
- Song, C.X.; Qi, X.; Huang, L.; Sun, J.B.; Li, L.Z.; Li, C.G.; Lu, W.H. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion behaviour of LaMgAl11O19/GdPO4 thermal barrier coating materials. Ceram. Int. 2023, 49, 26578–26588. [Google Scholar] [CrossRef]
- Guo, L.; Yan, Z.; Yu, Y.; Yang, J.; Li, M.Z. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 °C–1350 °C. Corros. Sci. 2019, 154, 111–122. [Google Scholar] [CrossRef]
- Kang, Y.X.; Bai, Y.; Fan, W.; Yuan, T.; Gao, Y.; Bao, C.G.; Li, B.Q. Thermal cycling performance of La2Ce2O7/50 vol.% YSZ composite thermal barrier coating with CMAS corrosion. J. Eur. Ceram. Soc. 2018, 38, 2851–2862. [Google Scholar] [CrossRef]
- Turcer, L.R.; Krause, A.R.; Garces, H.F.; Zhang, L.; Padture, N.P. Environmental barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 2018, 38, 3905–3913. [Google Scholar] [CrossRef]
- Yan, R.X.; Liang, W.P.; Miao, Q.; Zhao, H.; Liu, R.X.; Li, J.L.; Zang, K.; Dong, M.J.; He, X.P.; Gao, X.G.; et al. Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics. Ceram. Int. 2023, 49, 20729–220741. [Google Scholar] [CrossRef]
- Deng, S.X.; He, G.; Yang, Z.C.; Wang, J.X.; Li, J.T.; Jiang, L. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings. J. Mater. Sci. Technol. 2022, 107, 259–265. [Google Scholar] [CrossRef]
- Wang, J.S.; Chen, M.D.; Li, C.Z.; Chen, L.Y.; Yu, Y.S.; Wang, Y.H.; Liu, B.; Jing, Q.S. Comparison of corrosion behaviors of Sc2O3-CeO2 co-stabilized ZrO2 and YSZ ceramics exposed to CMAS at 1250 °C. Surf. Coat. Technol. 2021, 428, 127879. [Google Scholar] [CrossRef]
- Wang, J.S.; Lu, X.J.; Hu, M.Q.; Chen, M.D.; Sun, J.R.; Wang, Y.H.; Shu, C.X.; Zhang, H.; Liu, B.; Sun, J.B.; et al. Phase stability, thermophysical properties, thermal shock behavior and CMAS resistance of Sc2O3-CeO2 co-stabilized ZrO2 TBCs. Surf. Coat. Technol. 2023, 467, 129679. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Y.; Liu, Y.F.; Kang, Y.X.; Wang, Y.; Wang, Z.Z.; Tao, W.Z. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack. Ceram. Int. 2019, 45, 15763–15767. [Google Scholar] [CrossRef]
- Liao, Y.X.; Dai, Y.F.; Zhai, Y.F.; He, A.P.; He, H.; Liang, T.Q. The corrosion behavior of Sc2O3-Y2O3 co-doped ZrO2 influenced by Sc2O3 content in CMAS at 1300 °C. J. Eur. Ceram. Soc. 2024, 44, 1179–1187. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, L.; Li, Z.; Yu, Y.; He, Q. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings. Corros. Sci. 2019, 157, 450–461. [Google Scholar] [CrossRef]
- Ye, F.X.; Yuan, Y.H.; Yan, S.; Guo, L.; Yu, J.X. High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium–magnesium-aluminosilicate (CMAS). Mater. Chem. Phys. 2020, 256, 123679. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Barth, T.L.; Levi, C.G. Equilibrium relationships between thermal barrier oxides and silicate melts. Act. Mater. 2016, 120, 302–314. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.T.; Liu, Q.M.; Cheng, L.F.; Wang, Y.G. Calcium–magnesium–aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 °C. J. Eur. Ceram. Soc. 2013, 33, 3419–3428. [Google Scholar] [CrossRef]
- Guo, L.; Xin, H.; Li, Y.Y.; Yu, Y.; Yan, Z.; Hu, C.W.; Ye, F.X. Self-crystallization characteristics of calcium-magnesium-alumina- silicate (CMAS) glass under simulated conditions for thermal barrier coating applications. J. Eur. Ceram. Soc. 2020, 40, 5683–5691. [Google Scholar] [CrossRef]
- Zhou, B.Y.; Wu, Y.; Ke, X.J.; Zhou, Q.J.; Cui, Y.J.; Wang, C.L. Resistance of ytterbium silicate environmental barrier coatings against molten calcium-magnesium-aluminosilicate (CMAS): A comprehensive study. Surf. Coat. Technol. 2024, 479, 130540. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhou, M.F.; Li, M.Y.H.; Robinson, P.T.; Harlov, D.E. Kinetic controls on Sc distribution in diopside and geochemical behavior of Sc in magmatic systems. Geochim. Cosmochim. Acta 2022, 325, 316–332. [Google Scholar] [CrossRef]
- Zaleski, E.M.; Ensslen, C.; Levi, C.G. Melting and Crystallization of Silicate Systems Relevant to Thermal Barrier Coating Damage. J. Am. Ceram. Soc. 2015, 98, 1642–1649. [Google Scholar] [CrossRef]
- Reinsch, S.; Nascimento, M.L.F.; Müller, R.; Zanotto, E.D. Crystal growth kinetics in cordierite and diopside glasses in wide temperature ranges. J. Non-Cryst. Solids 2008, 354, 5386–5394. [Google Scholar] [CrossRef]
Zone # | Ca | Mg | Al | Si | Sc | Phase |
---|---|---|---|---|---|---|
1 | 33.4 | 3.1 | 16.5 | 46.7 | 0.3 | CMAS |
2 | 20.5 | 1.4 | 34.3 | 43.5 | 0.3 | Anorthite |
3 | 25.9 | 19.7 | 5.0 | 46.6 | 2.8 | Diopside |
4 | 25.8 | 19.6 | 6.4 | 43.9 | 4.3 | Diopside |
5 | 32.2 | 1.7 | 17.3 | 48.3 | 0.5 | CMAS |
6 | 19.6 | 1.4 | 33.5 | 45.2 | 0.3 | Anorthite |
7 | 25.2 | 18.3 | 6.0 | 45.4 | 5.1 | Diopside |
8 | 25.5 | 17.5 | 7.2 | 44.9 | 4.9 | Diopside |
9 | 32.0 | 1.7 | 18.2 | 47.5 | 0.6 | CMAS |
10 | 19.1 | 1.5 | 32.1 | 47.0 | 0.3 | Anorthite |
11 | 25.3 | 17.3 | 7.4 | 44.4 | 5.6 | Diopside |
12 | 25.6 | 17.7 | 7.1 | 44.1 | 5.5 | Diopside |
13 | 25.7 | 2.3 | 19.2 | 51.8 | 1.0 | CMAS |
14 | 24.2 | 19.7 | 5.3 | 46.6 | 4.2 | Diopside |
15 | 24.1 | 20.8 | 4.3 | 47.7 | 3.1 | Diopside |
Zone # | Ca | Mg | Al | Si | Sc | Phase |
---|---|---|---|---|---|---|
1 | 30.2 | 3.3 | 15.7 | 48.2 | 2.6 | CMAS |
2 | 24.2 | 16.2 | 10.3 | 43.5 | 5.8 | Diopside |
3 | 34.4 | 1.5 | 2.2 | 38.1 | 23.8 | Garnet |
4 | 30.1 | 2.7 | 15.2 | 48.5 | 3.5 | CMAS |
5 | 24.3 | 16.2 | 10.6 | 42.8 | 6.1 | Diopside |
6 | 35.2 | 1.6 | 2.5 | 37.2 | 23.5 | Garnet |
7 | 29.7 | 3.6 | 15.0 | 48.1 | 3.6 | CMAS |
8 | 24.5 | 15.8 | 11.2 | 42.4 | 6.1 | Diopside |
9 | 34.7 | 1.8 | 2.6 | 37.4 | 23.5 | Garnet |
10 | 26.1 | 1.7 | 17.4 | 49.8 | 4.0 | CMAS |
11 | 23.8 | 10.2 | 13.2 | 38.9 | 13.9 | Diopside |
12 | 22.9 | 11.0 | 12.0 | 40.0 | 14.1 | Diopside |
13 | 31.0 | 4.0 | 4.9 | 38.1 | 22.0 | Garnet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Z.; Mo, Z.; Yu, Z.; Cheng, Y.; Miao, Y.; Liang, T. Interactions Between Sc2O3 Ceramics and Calcium–Magnesium–Alumina–Silicate (CMAS) at Elevated Temperature. Crystals 2025, 15, 198. https://doi.org/10.3390/cryst15020198
Mo Z, Mo Z, Yu Z, Cheng Y, Miao Y, Liang T. Interactions Between Sc2O3 Ceramics and Calcium–Magnesium–Alumina–Silicate (CMAS) at Elevated Temperature. Crystals. 2025; 15(2):198. https://doi.org/10.3390/cryst15020198
Chicago/Turabian StyleMo, Zupeng, Zijian Mo, Zhiyun Yu, Yifan Cheng, Yiling Miao, and Tianquan Liang. 2025. "Interactions Between Sc2O3 Ceramics and Calcium–Magnesium–Alumina–Silicate (CMAS) at Elevated Temperature" Crystals 15, no. 2: 198. https://doi.org/10.3390/cryst15020198
APA StyleMo, Z., Mo, Z., Yu, Z., Cheng, Y., Miao, Y., & Liang, T. (2025). Interactions Between Sc2O3 Ceramics and Calcium–Magnesium–Alumina–Silicate (CMAS) at Elevated Temperature. Crystals, 15(2), 198. https://doi.org/10.3390/cryst15020198