Mineralogical Characteristics and Color Origin of Nephrite Containing Pink Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methods
3. Results and Discussion
3.1. Conventional Gemological Characteristics
3.2. Polarized Light Microscopy
3.3. XRD Testing
3.4. Chemical Composition Analysis
3.5. Infrared Spectroscopy
3.6. Raman Spectroscopy
3.7. UV–Visible Spectroscopy
3.8. Formation Mechanism
4. Conclusions
- (1)
- The pink mineral-bearing nephrite samples generally exhibit a color range from yellowish-white to light green, with a greasy luster. Pink patches of varying shades are distributed across the base, and the green hue of the base is positively correlated with its Fe content. The refractive index of the samples is approximately 1.61–1.62 (spot measurement), with a relative density ranging between 2.94 and 2.96. All samples are inert under ultraviolet fluorescence lighting.
- (2)
- The primary mineral component of the samples is tremolite, with no actinolite observed. Additionally, minor amounts of zoisite, muscovite, feldspar, diopside, and prehnite are present, typical of magnesian marble-type nephrite. Based on the results of an electron probe microanalysis, infrared spectroscopy, Raman spectroscopy, and ultraviolet–visible absorption spectroscopy, the pink mineral in the samples is primarily identified as Mn-bearing zoisite.
- (3)
- The ultraviolet–visible absorption spectroscopy results reveal that the main coloration mechanism of the pink zoisite is attributed to the energy level transitions of Mn2+ at 540 nm and 440 nm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Deng, J.; Shi, G.H.; Lu, T.; Wang, Q. Chemical Zone of Nephrite in Alamas, Xinjiang, China. Resour. Geol. 2010, 60, 249–259. [Google Scholar] [CrossRef]
- Kislov, E.V. Kavokta deposit, Middle Vitim mountain country, Russia: Composition and genesis of dolomite type nephrite. Geosciences 2024, 14, 303. [Google Scholar] [CrossRef]
- Kislov, E.V.; Goncharuk, I.S.; Vanteev, V.V. Mineral composition and formation model of dolomite type nephrite, Voimakan deposit, Middle-Vitim mountain country. Lithosphere 2024, 24, 609–628. [Google Scholar] [CrossRef]
- Aitchison, C.; Ireland, R.; Blake, C.; Flood, P.G. 530 Ma zircon age for ophiolite from the New England Orogen: Oldest rocks known from eastern Australia. Geology 1992, 20, 125–128. [Google Scholar] [CrossRef]
- Cooper, F. Nephrite and Metagabbro in the Haast Schist at Muddy Creek, Northwest Otago, New Zealand. N. Z. J. Geol. Geop. 1995, 56, 402–410. [Google Scholar] [CrossRef]
- Gil, G. Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geol. Q. 2013, 57, 395–404. [Google Scholar] [CrossRef]
- Burtseva, M.V.; Ripp, G.S.; Posokhov, V.F.; Murzintseva, A.E. Nephrites of East Siberia: Geochemical features and problems of genesis. Russ. Geol. Geop. 2015, 56, 402–410. [Google Scholar] [CrossRef]
- Feng, Y.H.; He, X.M.; Jing, Y.T. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea. Ore Geol. Rev. 2022, 141, 104655. [Google Scholar]
- Harlow, G.; Sorensen, S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Zhang, Z.Y.; Shi, G.H.; Zhang, Q.C.; Abuduwayiti, M.; Liu, J.H. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit. Lithos 2015, 212, 128–144. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Abuduwayiti, M.; Wang, C.; Zhang, S.P.; Shen, C.H.; Zhang, Z.Y.; He, M.Y.; Zhang, Y.; Yang, X.D. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, northwest China: Implication for a magnesium skarn. Ore. Geol. Rev. 2016, 72, 699–727. [Google Scholar] [CrossRef]
- Yang, L.; Lin, J.H.; Wang, L.; Tan, J.; Wang, B. Petrochemical characteristics and genesic significance of Luodian jade from Guizhou. J. Mineral. Petrol. 2012, 32, 12–19. [Google Scholar]
- Jiang, T.L.; Shi, G.H.; Ye, D.N.; Zhang, X.C.; Zhang, L.J.; Han, H.W. A new type of white nephrite from limestone replacement along the Kunlun–Altyn Tagh mountains: A case from the Mida deposit, Qiemo county, Xinjiang, China. Crystals 2023, 13, 1677. [Google Scholar] [CrossRef]
- Wei, X.; Shi, G.H.; Zhang, X.C.; Zhang, J.J.; Shih, M.Y. A new nephrite occurrence in Jiangxi province, China: Its characterization and gemological significance. Minerals 2024, 14, 432. [Google Scholar] [CrossRef]
- Ling, X.X.; Schmädicke, E.; Li, Q.L.; Gose, J.; Wu, R.H.; Wang, S.Q.; Liu, Y.; Tang, G.Q.; Li, X.H. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanehuan, Henan, China. Lithos 2015, 220–223, 289–299. [Google Scholar] [CrossRef]
- Shi, G.H.; Jia, R.; Santosh, M.; Liang, H.; He, H.Y. First report of a nephrite deposit from Somaliland, Africa: Characterization and geological and archaeological implications. GSA Bull. 2024, 136, 661–672. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, G.H.; Xu, L.G.; Li, X.L. Mineralogy and geochemistry of nephrite jade from Yinggelike deposit, Altyn Tagh (Xinjiang, NW China). Minerals 2020, 10, 418. [Google Scholar] [CrossRef]
- Gao, K. Study on the Metallogenic Mechanism of Tashisayi Nephrite from Xinjiang. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. [Google Scholar]
- Wang, C.B.; Yuan, X.Q.; Lei, T.; Zheng, Y.L. Gemmological characteristic of “anthophyllite jade” from Xinjiang, China. J. Gems Gemmol. 2018, 20, 37–45, (In Chinese with English Abstract). [Google Scholar]
- Tan, Q.M.; Lei, T.; He, L.J.; Ruan, L.; Ruan, Q.F. Comparative study on gemological characteristics of rhodonite jade in Brazil and Xinjiang of China. J. Superhard Mater. 2021, 33, 52–57. [Google Scholar]
- Hawthorne, F.C.; Oberti, R. Classification of the amphiboles. Rev. Mineral. Geochem. 2007, 67, 55–88. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 3rd ed.; The Mineralogical Society: London, UK, 2013; pp. 208–215. [Google Scholar]
- Lu, W. Infrared Spectroscopy of Minerals; Chongqing University Press: Chongqing, China, 1989; pp. 81–89. [Google Scholar]
- Ren, J.H.; Shi, G.H.; Zhang, J.H.; Yuan, Y.; Gao, K.; Wang, M.L.; Li, X.L.; Long, C. Infrared spectra of grayish green nephrite and gray nephrite: Characteristics and significance. Spectrosc. Spect. Anal. 2019, 39, 772–777, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.H.; Wang, Y.; Zhao, J.; Pei, Y. Gemmological characteristics and color genesis of a new pink clinozoisite Jade. J. Gems Gemol. 2020, 158, 43–49, (In Chinese with English Abstract). [Google Scholar]
- Ross, L.; Detrie, A.; Liu, Z.X. High-pressure Raman and infrared spectroscopic study of prehnite. Minerals 2020, 10, 312. [Google Scholar] [CrossRef]
- Yang, X.D.; Shi, G.H.; Liu, Y. Vibrational spectra of black species of Hetian nephrite (tremolite Jade) and its color genesis. Spectrosc. Spect. Anal. 2012, 32, 681–685, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.Y. Study on Gemmological and Mineralogical Characteristic of Pink Dushan Jade from Nanyang. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2020. [Google Scholar]
- Wang, W.N.; Chen, Q.; Zhou, Z.Y.; Shang, J.C.; Liu, Y.C. Research on gemological and spectroscopic characteristics of the nephrite containing pink minerals appeared in markets recently. China Gems Jades 2021, 169, 2–7, (In Chinese with English Abstract). [Google Scholar]
- Gan, F.P.; Wang, R.S.; Ma, A.N. Spectral identification tree (sit) for mineral extraction based on spectral characteristics of minerals. Geosci. Front. 2003, 10, 44–451. [Google Scholar]
- Schwarzinger, C. The heat treatment of pink zoisite. Minerals 2022, 12, 1472. [Google Scholar] [CrossRef]
- Tang, Y.L.; Chen, B.Z.; Jiang, R.H. Chinese Hetian Nephrite; Xinjiang People’s Publishing House: Xinjiang, China, 1994; pp. 103–206, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Deng, J.; Shi, G.H.; Sun, X.; Yang, L.Q. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China. Ore. Geol. Rev. 2011, 41, 122–132. [Google Scholar] [CrossRef]
- Jing, Y.T.; Liu, Y.; Zhang, Y.; Abuduwayiti, M. Metallogenic age, formation process and prospecting direction of marble-related nephrite deposit in China. Acta Petrol. Mineral. 2022, 41, 651–667, (In Chinese with English Abstract). [Google Scholar]
Sample Number | Microscopic Characteristics | Refractive Index | Specific Gravity | UV Fluorescence |
---|---|---|---|---|
TFN-1 | The overall color is white, with pink and white spots visible in some areas. | 1.61 | 2.95 | inertness |
TFN-2 | The overall color is light yellowish green, with pink masses visible in some areas. | 1.61 | 2.96 | inertness |
TFN-3 | The overall color is light green, with pink appearing in irregular bands or veins. | 1.61 | 2.94 | inertness |
TFN-4 | The overall color is light green, with pink appearing in irregular bands or veins. | 1.61 | 2.95 | inertness |
Sample Number | SiO2 | Al2O3 | FeOT | MgO | CaO | K2O |
---|---|---|---|---|---|---|
TFN-1-1 | 58.29 | 1.03 | 0.22 | 25.60 | 14.38 | 0.09 |
TFN-2-1 | 58.54 | 0.51 | 0.66 | 24.55 | 15.20 | 0.07 |
TFN-3-1 | 58.33 | 1.03 | 1.35 | 24.39 | 14.37 | 0.25 |
TFN-4-1 | 58.07 | 1.03 | 1.54 | 24.37 | 14.51 | 0.21 |
Sample Number | SiO2 | Al2O3 | FeOT | MnO | MgO | CaO | K2O |
---|---|---|---|---|---|---|---|
TFN-1-2 | 51.45 | 10.01 | 0.26 | 0.24 | 16.34 | 21.41 | 0.10 |
TFN-2-2 | 48.06 | 27.74 | 0.22 | 0.07 | 4.36 | 13.46 | 5.68 |
TFN-3-2 | 46.78 | 29.03 | 0.53 | 0.08 | 2.96 | 14.55 | 5.72 |
TFN-4-2 | 46.35 | 28.29 | 0.60 | 0.10 | 3.69 | 15.48 | 5.24 |
Sample | Tremolite | Muscovite | Zoisite | Andesine | Clinochlore | |||
---|---|---|---|---|---|---|---|---|
TFN 4-1-2 | TFN 1-1-2 | TFN 4-1-1 | TFN 4-2-4 | TFN 4-2-3 | TFN 1-2-2 | TFN 1-2-1 | TFN 1-1-1 | |
Na2O | 0.13 | 0.18 | 0.30 | 0.17 | 0.04 | 0.14 | 6.87 | 0.05 |
TiO2 | 0.06 | 0.01 | 0.30 | 0.03 | 0.00 | 0.04 | 0.08 | 0.00 |
SiO2 | 52.56 | 55.52 | 42.76 | 43.09 | 36.22 | 38.22 | 55.57 | 32.42 |
Cr2O3 | 0.05 | 0.02 | 0.03 | 0.00 | 0.00 | 0.02 | 0.01 | 0.03 |
MgO | 24.99 | 25.95 | 2.57 | 0.99 | 0.08 | 1.38 | 0.60 | 37.81 |
FeO | 1.67 | 0.06 | 0.28 | 0.20 | 0.20 | 0.38 | 0.00 | 0.43 |
K2O | 0.10 | 0.06 | 11.14 | 11.51 | 0.04 | 0.01 | 0.06 | 0.03 |
MnO | 0.16 | 0.02 | 0.05 | 0.06 | 0.13 | 0.10 | 0.00 | 0.22 |
Al2O3 | 1.72 | 0.60 | 36.44 | 38.81 | 34.82 | 32.89 | 27.76 | 16.68 |
CaO | 14.56 | 14.35 | 0.47 | 0.03 | 26.38 | 25.44 | 9.95 | 0.05 |
NiO | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.00 | 0.06 |
V2O5 | 0.03 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.05 |
Total | 96.03 | 96.78 | 94.37 | 94.94 | 97.93 | 98.67 | 100.90 | 87.83 |
K | 0.017 | 0.011 | 1.930 | 1.968 | 0.002 | 0.001 | 0.002 | 0.007 |
Na | 0.036 | 0.048 | 0.078 | 0.044 | 0.004 | 0.021 | 0.515 | 0.016 |
Ca | 2.169 | 2.105 | 0.069 | 0.004 | 2.169 | 2.062 | 0.419 | 0.010 |
Mg | 5.182 | 5.293 | 0.520 | 0.198 | 0.110 | 0.155 | 0.038 | 10.412 |
IVAl | 0.282 | 0.095 | 2.195 | 2.226 | 0.176 | 0.109 | 1.443 | 2.013 |
VIAl | 0 | 0 | 3.632 | 3.899 | 2.831 | 2.822 | 0 | 1.615 |
Mn | 0.019 | 0.002 | 0.006 | 0.006 | 0.011 | 0.006 | 0 | 0.034 |
Fe | 0.194 | 0.007 | 0.032 | 0.023 | 0.030 | 0.050 | 0 | 0.066 |
Si | 7.312 | 7.599 | 5.805 | 5.774 | 2.824 | 2.891 | 2.559 | 5.987 |
Cr | 0.005 | 0.003 | 0.003 | 0 | 0 | 0.001 | 0 | 0.004 |
Ti | 0.006 | 0.001 | 0.003 | 0.003 | 0 | 0.003 | 0 | 0 |
Mg/(Mg + Fe2+) | 0.964 | 0.998 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Li, Y.; Shi, M. Mineralogical Characteristics and Color Origin of Nephrite Containing Pink Minerals. Crystals 2025, 15, 151. https://doi.org/10.3390/cryst15020151
Yuan Y, Li Y, Shi M. Mineralogical Characteristics and Color Origin of Nephrite Containing Pink Minerals. Crystals. 2025; 15(2):151. https://doi.org/10.3390/cryst15020151
Chicago/Turabian StyleYuan, Ye, Youxuan Li, and Miao Shi. 2025. "Mineralogical Characteristics and Color Origin of Nephrite Containing Pink Minerals" Crystals 15, no. 2: 151. https://doi.org/10.3390/cryst15020151
APA StyleYuan, Y., Li, Y., & Shi, M. (2025). Mineralogical Characteristics and Color Origin of Nephrite Containing Pink Minerals. Crystals, 15(2), 151. https://doi.org/10.3390/cryst15020151