Growth and Characterization of Novel SrB2O4 Crystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Crystal Growth
2.2. Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy Analyses (EDS)
2.3. Single-Crystal X-Ray Diffraction
2.4. Powder X-Ray Diffraction (PXRD)
2.5. Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA)
2.6. Fourier-Transform Infrared (FT-IR) Spectroscopy
2.7. Fluorescence Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DTA | Differential Thermal Analysis |
| EDS | Energy-Dispersive X-ray Spectroscopy |
| FT-IR | Fourier-Transform Infrared Spectroscopy |
| ICDD | International Centre for Diffraction Data |
| ICSD | Inorganic Crystal Structure Database |
| NLO | Nonlinear optical |
| PXRD | Powder X-ray Diffraction |
| SEM | Scanning Electron Microscopy |
| SHG | Second harmonic generation |
| TGA | Thermogravimetric Analysis |
References
- Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Borates: A rich source for optical materials. Chem. Rev. 2020, 121, 1130–1202. [Google Scholar] [CrossRef]
- Cheng, M.; Hou, X.; Yang, Z.; Pan, S. Recent Progress in Borate-Based Short-Wavelength Nonlinear Optical Crystals with Boron–Oxygen Skeleton Modification. Mater. Chem. Front. 2023, 7, 4683–4692. [Google Scholar] [CrossRef]
- Kettlewell, B.; Boyd, D. Inside the Borate Anomaly: Leveraging a Predictive Modelling Approach to Navigate Complex Composition–Structure–Property Relationships in Oxyhalide Borate Glasses. Materials 2024, 17, 2073. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.; Hu, Z.; Wang, J.; Wu, Y.; Yu, H. Rational Design of a Deep-Ultraviolet Nonlinear Optical Crystal. J. Am. Chem. Soc. 2025, 147, 33023–33030. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y. Second Generation Tris(2-Pyridyl)Borate Ligands: Toward Supramolecular Polymeric Materials. Master’s Thesis, Rutgers, The State University of New Jersey, Newark, NJ, USA, October 2014. [Google Scholar]
- Cao, J.; Wang, Y.F.; Song, X.G.; Feng, J.C. One-Dimensional Nickel Borate Nanowhiskers: Characterization, Properties, and a Novel Application in Materials Bonding. RSC Adv. 2014, 4, 19221–19225. [Google Scholar] [CrossRef]
- Sanglay, G.D.D.; Garcia, J.S.; Palaganas, M.S.; Sorolla, M.; See, S.; Limjuco, L.A.; Ocon, J.D. Borate-Based Compounds as Mixed Polyanion Cathode Materials for Advanced Batteries. Molecules 2022, 27, 8047. [Google Scholar] [CrossRef]
- Cheng, B.; Li, Z.; Chu, Y.; Tudi, A.; Mutailipu, M.; Zhang, F.; Yang, Z.; Pan, S. (NH4)3B11PO19F3: A Deep-UV Nonlinear Optical Crystal with Unique [B5PO10F]∞ Layers. Nat. Sci. Rev. 2022, 9, nwac110. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Sun, M.; Liu, W.; Meng, X.; Yao, J. Synthesis and Characterization of a New Rare-Earth Borate Nonlinear Optical Crystal K7PbLu2B15O30. Dalton Trans. 2023, 52, 10109–10114. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Chen, X.; Chen, S.; Li, Y.; Shang, X.; Bai, Z.; Jiang, N.; Yan, Z.; Luo, J.; Zhao, S. A Nonlinear Optical Crystal with Deep-Ultraviolet Transparency and Appropriate Birefringence Achieved Using π-Conjugated Confined [B3O3F4(OH)]2−. New J. Chem. 2024, 48, 15281–15286. [Google Scholar] [CrossRef]
- Princy, A.; Kennedy, S.M.M.; Sayyed, M.I.; Hanafy, T.A.; Kamath, S.D. Structural, Optical, and Thermal Traits of Sm3+-Doped SrB2O4 Phosphors for Solid-State Lighting Applications. Solid State Sci. 2024, 157, 107724. [Google Scholar]
- Kumar, R.A.; Arivanandhan, M.; Hayakawa, Y. Rare Earth-Based Borate Single Crystals: Potential Materials for Nonlinear Optical and Laser Applications. Prog. Cryst. Growth Charact. Mater. 2013, 59, 113–132. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, X.; Xiao, W.; Song, X. Two New Rare-Earth Oxyborates Ba4BiTbO(BO3)4 and Ba1.54Sr2.46BiTbO(BO3)4 and Luminescence Properties of the Ba4BiTb1−xEuxO(BO3)4 Phosphors. RSC Adv. 2024, 14, 6270–6284. [Google Scholar] [CrossRef]
- Kang, L.; Lin, Z. Deep-Ultraviolet Nonlinear Optical Crystals: Concept Development and Materials Discovery. Light Sci. Appl. 2022, 11, 201. [Google Scholar] [CrossRef]
- Liu, M.; Kong, X.; Li, S.; Ye, N.; Hu, Z.; Wu, Y.; Li, C. Designing Rare-Earth Borates as UV Nonlinear Optical Crystals Exhibiting Strong Second-Harmonic Generation Responses. Chem. Commun. 2025, 61, 3155–3158. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, W.J.; Wang, H.; Lin, H.; Wu, L.M. Mixed-Anion Inorganic Compounds: A Favorable Candidate for Infrared Nonlinear Optical Materials. Cryst. Growth Des. 2019, 19, 4172–4192. [Google Scholar] [CrossRef]
- Vasiliev, A.D.; Cherepakhin, A.V.; Zaitsev, A.I. The Trigonal Polymorph of Strontium Tetraborate, β-SrB4O7. Acta Crystallogr. Sect. E 2010, 66, i48. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Chen, X.; Li, M. Synthesis and Crystal Structure of a New Strontium Borate, Sr2B16O26. Solid State Sci. 2008, 10, 894–900. [Google Scholar] [CrossRef]
- Wei, Z.F.; Chen, X.L.; Wang, F.M.; Li, W.C.; He, M.; Zhang, Y. Phase Relations in the Ternary System SrO–TiO2–B2O3. J. Alloys Compd. 2001, 327, L10–L13. [Google Scholar] [CrossRef]
- O’Connell, K.; Hanson, M.; O’Shea, H.; Boyd, D. Linear Release of Strontium Ions from High Borate Glasses via Lanthanide/Alkali Substitutions. J. Non-Cryst. Solids 2015, 430, 1–8. [Google Scholar] [CrossRef]
- Rajesh, D.; Naidu, M.D.; Ratnakaram, Y.C.; Balakrishna, A. Ho3+-Doped Strontium–Aluminium–Bismuth–Borate Glasses for Green Light Emission. Luminescence 2014, 29, 854–860. [Google Scholar] [CrossRef]
- Zhang, X.M.; Lian, Q.; Pan, Q.; Yuan, G.M.; Seo, H.J. Unusual Ce3+ Luminescence and Ce3+ → Tb3+ Energy Transfer Behavior in Strontium Lithium Borate SrLiB9O15. J. Alloys Compd. 2014, 607, 44–47. [Google Scholar] [CrossRef]
- Zhang, J.; Han, B.; Zhang, Y.; Lv, Q. Luminescence Properties of Ce3+ in Strontium Borate SrB2O4. J. Mater. Sci. Mater. Electron. 2016, 27, 3906–3910. [Google Scholar] [CrossRef]
- Krushna, B.R.; Pruthviraj, I.S.; Sharma, S.C.; Premkumar, H.B.; Manjunatha, K.; Wu, S.Y.; Ganesan, L.; George, A.; Nagabhushana, H. Synergistic Ce3+, Tb3+ Activated LaCaAl3O7 Phosphor: Bridging Forensic Science with Advanced White LED Applications. J. Lumin. 2025, 280, 121080. [Google Scholar]
- Aleksandrovsky, A.S.; Krylov, A.S.; Malakhovskii, A.V.; Potseluyko, A.M.; Zaitsev, A.I.; Zamkov, A.V. Europium Doped Strontium Borate Glasses and Their Optical Properties. J. Phys. Chem. Solids 2005, 66, 75–79. [Google Scholar] [CrossRef]
- Demyanyshyn, N.M.; Mytsyk, B.G.; Sakharuk, O.M. Elasto-Optic Effect Anisotropy in Strontium Borate Crystals. Appl. Opt. 2014, 53, 1620–1628. [Google Scholar] [CrossRef]
- Ross, N.L.; Angel, R.J. Crystal Structure of High Pressure SrB2O4 (IV). J. Solid State Chem. 1991, 90, 27–30. [Google Scholar] [CrossRef]
- Dernier, P. Crystal Data of Two High Pressure Phases of SrB2O4. Acta Crystallogr. Sect. B 1969, 25, 1001–1003. [Google Scholar] [CrossRef]
- Marezio, M.; Remeika, J.P.; Dernier, P.D. The Crystal Structure of the High-Pressure Phase CaB2O4 (IV), and Polymorphism in CaB2O4. Acta Crystallogr. Sect. B 1969, 25, 965–970. [Google Scholar] [CrossRef]
- de la Flor, G.; Orobengoa, D.; Tasci, E.; Perez-Mato, J.M.; Aroyo, M.I. Comparison of Structures Applying the Tools Available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. [Google Scholar] [CrossRef]
- Diffraction, Rigaku Oxford. Single crystal diffraction software: CrysAlisPro. Rigaku J. 2016, 32, 31–34. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Fouassier, C.; Levasseur, A.; Hagenmuller, P. Les Halogénoborates M2B5O9X (M = Ca, Sr, Ba, Eu, Pb; X = Cl, Br). J. Solid State Chem. 1971, 3, 206–208. [Google Scholar] [CrossRef]
- Rza-Zade, P.F.; Abdullaev, G.K.; Eyubova, N.A.; Samedov, F.R. Physicochemical Study of the Li2O–CuO–B2O3 System. Izv. Akad. Nauk SSSR Neorg. Mater. 1971, 7, 2098–2100. [Google Scholar]
- Abdullaev, G.K.; Rza-Zade, P.F.; Mamedov, K.S. Physicochemical Study of the Triple Li2O–CuO–B2O3 System. Zhurnal Neorg. Khim. 1982, 27, 1837–1841. [Google Scholar]
- Guertler, W. Über Die Schmelzpunkte Der Mischungen Der Alkalischen Erden Mit Borsäureanhydrid. Z. Anorg. Chem. 1904, 40, 337–354. [Google Scholar] [CrossRef]
- Oseledchik, Y.S.; Prosvirnin, A.L.; Starshenko, V.V.; Osadchuk, V.V.; Pisarevsky, A.I.; Belokrys, S.P.; Korol, A.S.; Svitanko, N.V.; Selevich, A.F.; Krikunov, S.A. Crystal Growth and Properties of Strontium Tetraborate. J. Cryst. Growth 1994, 135, 373–376. [Google Scholar] [CrossRef]
- Kudrjavtcev, D.P.; Oseledchik, Y.S.; Prosvirnin, A.L.; Svitanko, N.V. Growth of a New Strontium Borate Crystal Sr4B14O25. J. Cryst. Growth 2003, 254, 456–460. [Google Scholar] [CrossRef]
- Kaundal, R.S.; Kaur, S.; Singh, N.; Singh, K.J. Investigation of Structural Properties of Lead Strontium Borate Glasses for Gamma-Ray Shielding Applications. J. Phys. Chem. Solids 2010, 71, 1191–1195. [Google Scholar] [CrossRef]
- Kim, J.-B.; Lee, K.-S.; Suh, I.-H.; Lee, J.-H.; Park, J.-R.; Shin, Y.-H. Strontium Metaborate, SrB2O4. Acta Crystallogr. Sect. C 1996, 52, 498–500. [Google Scholar] [CrossRef]
- Brown, I. Valence: A Program for Calculating Bond Valences. J. Appl. Crystallogr. 1996, 29, 479–480. [Google Scholar] [CrossRef]
- Bergerhoff, G.; Berndt, M.; Brandenburg, K.; Degen, T. Concerning Inorganic Crystal Structure Types. Acta Crystallogr. Sect. B 1999, 55, 147–156. [Google Scholar] [CrossRef]
- Zhu, D.; Yun, S.; Nai, X.; Zhao, D.; Liu, X.; Li, W. Synthesis and Characterization of Strontium Chloroborate Whiskers. Cryst. Res. Technol. 2013, 48, 6–10. [Google Scholar] [CrossRef]
- Jin, Y.; Ran, R.; Lin, H.; Li, Y.; Chen, H.; Fang, F.; Lin, H.; Ren, H. The Luminescence Properties of the Interstitial Eu2+ in SrB2O4 for UV Light-Emitting Diode. Phys. Status Solidi A 2023, 220, 2200823. [Google Scholar] [CrossRef]









), the emissions using 395 nm excitation are shown as a red circle (
) and the emissions using 350 nm excitation are shown as blue triangles (
).
), the emissions using 395 nm excitation are shown as a red circle (
) and the emissions using 350 nm excitation are shown as blue triangles (
).
| Sample 1 | Element Presence Detection | ||||
|---|---|---|---|---|---|
| Cu | Cl | Sr | B | O | |
| single crystals | - | - | yes | yes | yes |
| bulk mass | yes | yes | yes | yes | yes |
| Empirical formula | B6O12Sr3 |
| Formula weight | 519.72 (173.24) |
| Temperature/K | 290 |
| Crystal system | orthorhombic |
| Space group | Pna21 |
| a/Å | 12.4080 (4) |
| b/Å | 6.47870 (19) |
| c/Å | 11.4230 (3) |
| α/° | 90 |
| β/° | 90 |
| γ/° | 90 |
| Volume/Å3 | 918.27 (5) |
| Z | 4 |
| ρcalc (g/cm3) | 3.759 |
| μ/mm−1 | 17.437 |
| F(000) | 960.0 |
| Crystal size/mm3 | 0.25 × 0.2 × 0.15 |
| Radiation | MoKα (λ = 0.71073) |
| 2Θ range for data collection/° | 6.568 to 62.056 |
| Index ranges | −17 ≤ h ≤ 17, −8 ≤ k ≤ 9, −16 ≤ l ≤ 11 |
| Reflections collected/independent | 6841/2291 |
| Rint/Rsigma | 0.0373/0.0409 |
| Data/restraints/parameters | 2291/1/166 |
| Goodness-of-fit on F2 | 1.070 |
| Final R indexes [I ≥ 2σ(I)] | R1 = 0.0250, wR2 = 0.0456 |
| Final R indexes [all data] | R1 = 0.0298, wR2 = 0.0474 |
| Largest diff. peak/hole/e Å−3 | 0.73/−0.89 |
| Flack parameter | −0.018 (7) |
| WP | Atom | Coordinates in SrB2O4 | Atom | Coordinates in CaB2O4 | |
|---|---|---|---|---|---|
| 4a | (x,y,z) | B1 | (0.150400,0.221100,0.539125) | B1 | (0.140100,0.252900,0.539000) |
| 4a | (x,y,z) | B2 | (0.188500,0.090400,0.747625) | B3 | (0.213100,0.119100,0.740300) |
| 4a | (x,y,z) | B3 | (0.307000,0.058000,0.941925) | B4 | (0.322200,0.100600,0.944200) |
| 4a | (x,y,z) | B4 | (0.287200,0.361600,0.078025) | B2 | (0.251000,0.419300,0.051500) |
| 4a | (x,y,z) | B5 | (0.498600,0.045500,0.470425) | B5 | (0.465800,0.018300,0.480000) |
| 4a | (x,y,z) | B6 | (0.494300,0.388600,0.242725) | B6 | (0.474800,0.375800,0.247700) |
| 4a | (x,y,z) | O1 | (0.084400,0.021200,0.796825) | O9 | (0.106900,0.022000,0.798100) |
| 4a | (x,y,z) | O2 | (0.088100,0.017800,0.214625) | O3 | (0.071700,0.029700,0.200900) |
| 4a | (x,y,z) | O3 | (0.426300,0.092700,0.926725) | O11 | (0.456300,0.137000,0.945800) |
| 4a | (x,y,z) | O4 | (0.255800,0.165100,0.842725) | O10 | (0.287000,0.204600,0.833600) |
| 4a | (x,y,z) | O5 | (0.032500,0.268000,0.519425) | O7 | (0.006100,0.300900,0.530500) |
| 4a | (x,y,z) | O6 | (0.104900,0.488500,0.979825) | O12 | (0.150400,0.476800,0.966800) |
| 4a | (x,y,z) | O7 | (0.215400,0.340000,0.455525) | O5 | (0.200900,0.375000,0.448600) |
| 4a | (x,y,z) | O8 | (0.467500,0.191800,0.216825) | O4 | (0.454700,0.171500,0.256700) |
| 4a | (x,y,z) | O9 | (0.157700,0.997400,0.509125) | O6 | (0.145600,0.032200,0.511600) |
| 4a | (x,y,z) | O10 | (0.253700,0.416000,0.190525) | O2 | (0.217100,0.470400,0.173400) |
| 4a | (x,y,z) | O11 | (0.176600,0.257800,0.662925) | O8 | (0.173400,0.294600,0.663500) |
| 4a | (x,y,z) | O12 | (0.268500,0.161900,0.049625) | O1 | (0.265700,0.194400,0.045900) |
| 4a | (x,y,z) | Sr1 | (0.062130,0.111270,0.003505) | Ca1 | (0.073500,0.050400,0.000000) |
| 4a | (x,y,z) | Sr2 | (0.075110,0.632590,0.204245) | Ca2 | (0.032500,0.659900,0.233800) |
| 4a | (x,y,z) | Sr3 | (0.274960,0.069010,0.299105) | Ca3 | (0.253000,0.112800,0.279500) |
| Atom | Valence State | Bond Valence Calculation | % Deviation from Assumed Valence State |
|---|---|---|---|
| Srl | Sr1(2) | 2.073 | 4 |
| Sr2 | Sr2(2) | 2.098 | 5 |
| Sr3 | Sr3(2) | 2.094 | 5 |
| Bl | B1(3) | 2.938 | 2 |
| B2 | B2(3) | 3.061 | 2 |
| B3 | B3(3) | 3.006 | 1 |
| B4 | B4(3) | 2.998 | 1 |
| B5 | B5(3) | 2.982 | 1 |
| B6 | B6(3) | 2.946 | 2 |
| WP | Atom CaB2O4 | Atom SrB2O4 | Atomic Displacements | ||||
|---|---|---|---|---|---|---|---|
| ux | uy | uz | |u| | ||||
| 4a | (x,y,z) | B1 | B1 | 0.0103 | −0.0318 | 0.0001 | 0.2344 |
| 4a | (x,y,z) | O8 | O11 | 0.0032 | −0.0368 | −0.0006 | 0.2378 |
| 4a | (x,y,z) | O9 | O1 | −0.0225 | −0.0008 | −0.0013 | 0.2565 |
| 4a | (x,y,z) | O3 | O2 | 0.0164 | −0.0119 | 0.0137 | 0.2543 |
| 4a | (x,y,z) | O6 | O9 | 0.0121 | −0.0348 | −0.0025 | 0.2628 |
| 4a | (x,y,z) | O5 | O7 | 0.0145 | −0.0350 | 0.0069 | 0.2885 |
| 4a | (x,y,z) | B3 | B2 | −0.0246 | −0.0287 | 0.0073 | 0.3446 |
| 4a | (x,y,z) | Ca1 | Sr1 | −0.0114 | 0.0609 | 0.0035 | 0.4114 |
| 4a | (x,y,z) | Ca3 | Sr3 | 0.0220 | −0.0438 | 0.0196 | 0.4355 |
| 4a | (x,y,z) | O10 | O4 | −0.0312 | −0.0395 | 0.0091 | 0.4475 |
| 4a | (x,y,z) | O12 | O6 | −0.0455 | 0.0117 | 0.0130 | 0.5435 |
| 4a | (x,y,z) | Ca2 | Sr2 | 0.0426 | −0.0273 | −0.0296 | 0.6141 |
| 4a | (x,y,z) | O7 | O5 | 0.0264 | −0.0329 | −0.0111 | 0.3873 |
| 4a | (x,y,z) | O2 | O10 | 0.0366 | −0.0544 | 0.0171 | 0.5757 |
| 4a | (x,y,z) | B2 | B4 | 0.0362 | −0.0577 | 0.0265 | 0.6287 |
| 4a | (x,y,z) | B4 | B3 | −0.0152 | −0.0426 | −0.0023 | 0.3233 |
| 4a | (x,y,z) | B5 | B5 | 0.0328 | 0.0272 | −0.0096 | 0.4256 |
| 4a | (x,y,z) | O1 | O12 | 0.0028 | −0.0325 | 0.0037 | 0.2140 |
| 4a | (x,y,z) | B6 | B6 | 0.0195 | 0.0128 | −0.0050 | 0.2431 |
| 4a | (x,y,z) | O4 | O8 | 0.0128 | 0.0203 | −0.0399 | 0.4911 |
| 4a | (x,y,z) | O11 | O3 | −0.0300 | −0.0443 | −0.0191 | 0.4929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, M.; Rusew, R.; Nikolova, R.; Shivachev, B. Growth and Characterization of Novel SrB2O4 Crystals. Crystals 2025, 15, 921. https://doi.org/10.3390/cryst15110921
Angelova M, Rusew R, Nikolova R, Shivachev B. Growth and Characterization of Novel SrB2O4 Crystals. Crystals. 2025; 15(11):921. https://doi.org/10.3390/cryst15110921
Chicago/Turabian StyleAngelova, Magdalena, Rusi Rusew, Rositsa Nikolova, and Boris Shivachev. 2025. "Growth and Characterization of Novel SrB2O4 Crystals" Crystals 15, no. 11: 921. https://doi.org/10.3390/cryst15110921
APA StyleAngelova, M., Rusew, R., Nikolova, R., & Shivachev, B. (2025). Growth and Characterization of Novel SrB2O4 Crystals. Crystals, 15(11), 921. https://doi.org/10.3390/cryst15110921

