Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PV | Photovoltaics |
| MM | Metamorphic |
| MOVPE | Metal Organic Vapour Phase Epitaxy |
| MJ | Multi-Junction |
| 3J | Triple Junction |
| HRXRD | High Resolution X-Ray Diffraction |
| RSM | Reciprocal Space Map |
| AFM | Atomic Force Microscopy |
| PL | Photoluminescence |
| ECV | Electrochemical Capacitance–Voltage |
References
- Li, S.; Hao, C.; Wu, P.; Ji, J.; Yang, Y.; Yao, J. Review of Multi-junction Solar Cell & Factors Impacting the Efficiency of Multi-junction Solar Cell. Energy Source Part A 2023, 45, 12737–12758. [Google Scholar]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Peters, I.M.; Gallegos, C.D.R.; Lüer, L.; Hauch, J.A.; Brabec, C.J. Practical limits of multijunction solar cells. Prog. Photovolt. 2023, 31, 1006–1015. [Google Scholar] [CrossRef]
- Chiu, P.T. Chapter four—Space applications of III–V single- and multijunction solar cells. In Photovoltaics for Space; Elsevier: Amsterdam, The Netherlands, 2023; pp. 79–127. [Google Scholar]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mat. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Pearce, P.M.; Halme, J.; Jiang, J.K.; Ekins-Daukes, N.J. Efficiency limits and design principles for multi-junction coloured photovoltaics. Energy Environ. Sci. 2024, 17, 1189–1201. [Google Scholar] [CrossRef]
- Raya-Armenta, J.M.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. A short review of radiation-induced degradation of III–V photovoltaic cells for space applications. Sol. Energy Mat. Sol. C 2021, 23, 111379. [Google Scholar] [CrossRef]
- Takamoto, T.; Washio, H.; Juso, H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1–5. [Google Scholar]
- Skachkov, A. Optimization of the structure of a GaInP/GaAs/Ge triple-junction solar cell with an Al0.1Ga0.9As/Al0.8Ga0.2As integrated Bragg reflector. Optoelectronics 2014, 50, 423–427. [Google Scholar] [CrossRef]
- He, Y.; Yan, W. Fabrication and simulation of GaInAs Solar cells using compositionally step-graded AlGaInAs buffers on GaAs substrate. Opt. Quant. Electron. 2020, 52, 372. [Google Scholar] [CrossRef]
- Takamoto, T.; Kaneiwa, M.; Imaizumi, M.; Yamaguchi, M. InGaP/GaAs-based multijunction solar cells. Progr. Photovolt. 2005, 13, 495–511. [Google Scholar] [CrossRef]
- Du, B.; Gu, Y.; Zhang, Y.G.; Chen, X.Y.; Xi, S.P.; Ma, X.Y.; Ji, W.Y.; Shi, Y.H.; Li, X.; Gong, H.M. Effects of continuously or step-continuously graded buffer on the performance of wavelength extended InGaAs photodetectors. J. Cryst. Growth 2016, 440, 1–5. [Google Scholar] [CrossRef]
- Kim, H.; Xu, S.; Liu, C.; Lekhal, K.; Kuech, T.; Mawst, L. MOCVD-Grown In0.22Ga0.78As Metamorphic Buffer Layer with Ultralow Threading Dislocation Density. Cryst. Growth Des. 2024, 24, 3707–3713. [Google Scholar] [CrossRef]
- Stephen, N.; Kumar, P.; Gocalinska, A.; Mura, E.; Kepaptsoglou, D.; Ramasse, Q.; Pelucchi, E.; Arredondo, M. Dislocation and strain mapping in metamorphic parabolic-graded InGaAs buffers on GaAs. J. Mater. Sci. 2023, 58, 9547–9561. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.; Schreiber, W.; Schygulla, P.; Souza, P.L.; Janz, S.; Lackner, D.; Ohlmann, J. III–V material growth on electrochemically porosified Ge substrates. J. Cryst. Growth 2023, 602, 126980. [Google Scholar] [CrossRef]
- Xu, J.; Yang, K.; Xu, Q.; Zhu, X.; Wang, X.; Lu, M. Fabrication and Irradiation Effect of Inverted Metamorphic Triple Junction GaInP/GaAs/InGaAs Solar Cells. Crystals 2022, 12, 670. [Google Scholar] [CrossRef]
- Heini, M.; Aierken, A.; Li, Z.H.; Zhao, X.F.; Sailai, M.; Shen, X.B.; Xu, Y.; Liu, H.T.; Li, Y.D.; Guo, Q.; et al. Changes in Output Parameters of 1 MeV Electron Irradiated Upright Metamorphic GaInP/GaInAs/Ge Triple Junction Solar Cell. AIP Adv. 2018, 8, 105022. [Google Scholar] [CrossRef]
- Law, J.J.M.; Carter, A.D.; Lee, S.; Huang, C.-Y.; Lu, H.; Rodwell, M.J.W. Co-doping of InxGa1−xAs with silicon and tellurium for improved ultra-low contact resistance. J. Cryst. Growth 2013, 378, 92–95. [Google Scholar] [CrossRef]
- Orzali, T.; Vert, A.; Lee, R.T.P.; Norvilas, A.; Huang, G.; Herman, J.L.; Hill, R.J.W.; Papa Rao, S.S. Heavily tellurium doped n-type InGaAs grown by MOCVD on 300 mm Si wafers. J. Cryst. Growth 2015, 416, 243–247. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Wang, J.; Yang, H.; Deng, G. High performance p++-AlGaAs/n++-InGaP tunnel junctions for ultra-high concentration photovoltaics. Opt. Express 2022, 30, 23763–23770. [Google Scholar] [CrossRef]
- Ulyanenkov, A. LEPTOS: Software for interpretation of X-ray reflectivity and X-ray diffraction data from multilayers and superlattices. Proc. SPIE 2004, 5536, 1–15. [Google Scholar]
- Chen, Z.; Long, J.; Sun, Q.; Wang, X.; Wu, X.; Li, X.; Yu, M.; Luo, X.; Zhao, H.; Fu, Y.; et al. Stress Analysis of Flexible GaInP/GaAs/InGaAs Solar Cells Based on Cu Thin-Film Substrates. Adv. Energy Sustain. Res. 2022, 4, 2200136. [Google Scholar] [CrossRef]
- Vaitkus, A.; Merkys, A.; Sander, T.; Quirós, M.; Thiessen, P.A.; Bolton, E.E.; Gražulis, S. A workflow for deriving chemical entities from crystallographic data and its application to the Crystallography Open Database. J. Cheminform. 2023, 15, 123. [Google Scholar] [CrossRef]
- Goldman, R.S.; Kavanagh, K.L.; Wieder, H.H.; Ehrlich, S.N.; Feenstra, R.M. Effects of GaAs substrate misorientation on strain relaxation in InxGa1−xAs films and multilayers. J. Appl. Phys. 1998, 83, 5137–5149. [Google Scholar] [CrossRef]
- Dolabella, S.; Borzì, A.; Dommann, A.; Neels, A. Lattice Strain Defects Analysis in Nanostructured Semiconductor Materials and Devices by High-Resolution X-Ray Diffraction: Theoretical and Practical Aspects. Small Methods 2021, 6, 2100932. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Wang, H.; Wang, J.; Zhang, Y.; Niu, R.; Chen, X.; Wang, B.; Xiao, Y.; Zhang, Z.; Liu, W.; et al. 1064 nm InGaAs metamorphic laser powerconverts with over 44% efficiency. Opt. Express 2022, 30, 42178. [Google Scholar] [CrossRef] [PubMed]
- Goetz, K.-H.; Bimberg, D.; Jürgensen, H.; Selders, J.; Solomonov, A.V.; Glinskii, G.F.; Razeghi, M. Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition . J. Appl. Phys. 1983, 54, 4543–4552. [Google Scholar] [CrossRef]
- Adachi, S. Physical Properties of III–V Semiconductor Compounds; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Jiang, D.-S.; Makita, Y.; Ploog, K.; Queisser, H.J. Electrical properties and photoluminescence of Te-doped GaAs grown by molecular beam epitaxy. J. Appl. Phys. 1982, 53, 999–1006. [Google Scholar]
- Moss, T.S. The Interpretation of the Properties of Indium Antimonide. Proc. Phys. Soc. Sect. B 1954, 67, 775. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632. [Google Scholar] [CrossRef]
- Borghs, G.; Bhattacharyya, K.; Deneffe, K.; Van Mieghem, P.; Mertens, R. Band-gap narrowing in highly doped n- and p-type GaAs studied by photoluminescence spectroscopy. J. Appl. Phys. 1989, 66, 4381–4386. [Google Scholar] [CrossRef]









| Top Layer In Content (%) | R Layer 1 (%) | R Layer 2 (%) | R Layer 3 (%) | R Layer 4 (%) |
|---|---|---|---|---|
| 4.9 | \ | \ | \ | 8 |
| 6.7 | 64 | 57 | 41 | 58 |
| 8.0 | 99 | 95 | 93 | 79 |
| 9.0 | 79 | 61 | 76 | 69 |
| 12.0 | 88 | 85 | 71 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achilli, E.; Armani, N.; Pedrini, J.; Greco, E.; Digrandi, S.; Fratta, A.; Pezzoli, F.; Campesato, R.; Timò, G. Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution. Crystals 2025, 15, 900. https://doi.org/10.3390/cryst15100900
Achilli E, Armani N, Pedrini J, Greco E, Digrandi S, Fratta A, Pezzoli F, Campesato R, Timò G. Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution. Crystals. 2025; 15(10):900. https://doi.org/10.3390/cryst15100900
Chicago/Turabian StyleAchilli, Elisabetta, Nicola Armani, Jacopo Pedrini, Erminio Greco, Salvatore Digrandi, Andrea Fratta, Fabio Pezzoli, Roberta Campesato, and Gianluca Timò. 2025. "Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution" Crystals 15, no. 10: 900. https://doi.org/10.3390/cryst15100900
APA StyleAchilli, E., Armani, N., Pedrini, J., Greco, E., Digrandi, S., Fratta, A., Pezzoli, F., Campesato, R., & Timò, G. (2025). Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution. Crystals, 15(10), 900. https://doi.org/10.3390/cryst15100900

