Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics
Abstract
Highlights
- Na-aluminosilicate glasses containing La2O3 and LaF3 were obtained.
- Na-aluminosilicate glasses provide a thermally stable matrix for the incorporation of lanthanides, either in the form of oxides or fluorides.
- The addition of La2O3 or LaF3 instead of Na2O increases the glass transition temperature.
- For glass containing 7.5 mol% LaF3, a low-phonon phase can be obtained through a controlled crystallization process.
Abstract
1. Introduction
2. Methods
3. Materials
4. Results and Discussion
4.1. Composition
4.2. Thermal Analysis
4.3. XRD Characterization
4.4. FT-IR Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Peng, X.; Fei, M.; Zhang, W.; Teng, L.; Hu, F.; Wei, R.; Guo, H. Adjustable white luminescence and high thermal stability in Eu2+/Eu3+/Tb3+/Al co-doped aluminosilicate oxyfluoride glass. J. Alloys Compd. 2020, 846, 156435. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Wang, X.; Feng, Y.; Guo, B.; Zhang, Y.; Wang, Y.; Zhao, C.; Yang, Y.; Xia, L. Thermal conductive networks constructed by Sialon fibers in-situ synthesized in barium aluminosilicate glass–ceramic. Compos. Part A Appl. Sci. Manuf. 2025, 192, 108810. [Google Scholar] [CrossRef]
- Jiang, B.; Ding, Y.; Sun, J.; Cao, M.; Xu, J.; Guo, Y.; Li, Y.; Gao, G. Investigation on the tensile properties of annealed and chemically strengthened aluminosilicate glass. Constr. Build. Mater. 2025, 493, 143317. [Google Scholar] [CrossRef]
- Li, K.; Cai, Y.; Xu, F.; Tian, P.; Yuan, J.; Peng, Z. Structure, mechanical properties, and diffusion kinetics of chemical strengthening ultra-thin aluminosilicate glass by two-step method. Ceram. Int. 2025, 51, 27660–27669. [Google Scholar] [CrossRef]
- Lien, N.T.Q.; Van Tuyen, H.; Nogami, M. Effects of Na/Al ratio on phonon sideband spectra and luminescent characteristics of Eu3+ doped sodium aluminosilicate glasses. Mater. Chem. Phys. 2024, 312, 128669. [Google Scholar] [CrossRef]
- Cassetta, M.; Safonova, A.; Mariotto, G.; Daldosso, N.; You, S.; Kumar, P.; Vomiero, A.; Ben Zaied, M.Y.; Bouaicha, M.; Enrichi, F. Fe-dependent optical properties of peralkaline soda aluminosilicate glasses: A combined Raman and photoluminescence study. Opt. Mater. 2025, 165, 117161. [Google Scholar] [CrossRef]
- Vařák, P.; Kamrádek, M.; Mrázek, J.; Podrazký, O.; Aubrecht, J.; Peterka, P.; Nekvindová, P.; Kašík, I. Luminescence and laser properties of RE-doped silica optical fibers: The role of composition, fabrication processing, and inter-ionic energy transfers. Opt. Mater. X 2022, 15, 100177. [Google Scholar] [CrossRef]
- Qiang, M.; Wang, M.; Zhang, L.; Wang, Y.; Yin, X.; Jiang, Y.; Fan, J.; Zhang, L. Research on ultra-smooth surface processing of mid-infrared indium fluoride-based fiber glass. J. Alloys Compd. 2025, 1027, 180590. [Google Scholar] [CrossRef]
- Sumachev, K.; Savikin, A.; Egolin, V. Enhanced 1.5-μm luminescence of Er3+ in ZBLAN glasses by additional doping with Tb3+ and Yb3+ ions. Opt. Mater. 2025, 160, 116688. [Google Scholar] [CrossRef]
- Anders, K.; Jusza, A.; Komorowski, P.; Andrejuk, P.; Piramidowicz, R. Short wavelength up-converted emission studies in Er3+ and Yb3+ doped ZBLAN glasses. J. Lumin. 2018, 201, 427–433. [Google Scholar] [CrossRef]
- Gan, H.; Xia, K.; Gui, Y.; Zhang, X.; Zeng, N.; Cao, Z.; Wang, X.; Dai, S.; Liu, Z. High content Er3+ doped ZBLAN glass: The spectral characteristics and high slope efficiency MIR laser investigation. J. Alloys Compd. 2021, 865, 158170. [Google Scholar] [CrossRef]
- Santos, F.; Delben, J.; Delben, A.; Andrade, L.; Lima, S. Thermal stability and crystallization behavior of TiO2 doped ZBLAN glasses. J. Non-Cryst. Solids 2011, 357, 2907–2910. [Google Scholar] [CrossRef]
- Yashdeep; Subbiah, S. Use of magnetic fields to impact glass-transition and crystallization during manufacturing of ZBLAN optical fibers. Manuf. Lett. 2024, 41, 442–450. [Google Scholar] [CrossRef]
- Leśniak, M.; Starzyk, B.; Zając, P.; Szymczak, P.; Jimenez, G.L.; Szumera, M.; Ziąbka, M.; Kochanowicz, M.; Miluski, P.; Żmojda, J.; et al. Structural and luminescent properties of Er3+-doped tellurite-phosphate oxide/oxyfluoride glasses and glass-ceramics modified with Sr2+. Opt. Mater. 2025, 167, 117328. [Google Scholar] [CrossRef]
- Secu, C.; Negrea, R.; Secu, M. Eu3+ probe ion for rare-earth dopant site structure in sol–gel derived LiYF4 oxyfluoride glass–ceramic. Opt. Mater. 2013, 35, 2456–2460. [Google Scholar] [CrossRef]
- Wang, S.; Kang, M.; Zheng, X.; Qiao, X.; Wang, C.; Liu, L.; Ren, J.; Zhang, J. Controllable growth of Ce3+-doped fluoride nanocrystals (LaF3/KLaF4) in fluorosilicate glass. J. Eur. Ceram. Soc. 2024, 44, 116740. [Google Scholar] [CrossRef]
- Vermillac, M.; Fneich, H.; Lupi, J.-F.; Tissot, J.-B.; Kucera, C.; Vennéguès, P.; Mehdi, A.; Neuville, D.R.; Ballato, J.; Blanc, W. Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium’s environment in silica-based optical fibres. Opt. Mater. 2017, 68, 24–28. [Google Scholar] [CrossRef]
- Lindstrom, T.; Garber, E.; Edmonson, D.; Hawkins, T.; Chen, Y.; Turri, G.; Bass, M.; Ballato, J. Spectral engineering of optical fiber preforms through active nanoparticle doping. Opt. Mater. Express 2012, 2, 1520–1528. [Google Scholar] [CrossRef]
- Kalahe, J.; Onodera, Y.; Takimoto, Y.; Hijiya, H.; Ono, M.; Miyatani, K.; Kohara, S.; Urata, S.; Du, J. Influence of interatomic potential and simulation procedures on the structures and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Non-Cryst. Solids 2022, 588, 121639. [Google Scholar] [CrossRef]
- Lu, P.; Zan, Y.; Ren, J.; Zhao, T.; Xu, K.; Goel, A. Structure and crystallization behavior of phosphorus-containing nepheline (NaAlSiO4) based sodium aluminosilicate glasses. J. Non-Cryst. Solids 2021, 560, 120719. [Google Scholar] [CrossRef]
- Singh, S.; Simantilleke, A.P.; Singh, D. Synthesis, structural and photoluminescence behaviour of novel La2SiO5:Eu3+/Tb3+ nanomaterials for UV-LEDs. Optik 2020, 221, 165324. [Google Scholar] [CrossRef]
- Ogugua, S.N.; Shaat, S.K.; Swart, H.C.; Ntwaeaborwa, O.M. The influence of Dy3+ ions concentration and annealing on the properties of LaGdSiO5:Dy3+ nanophosphors. J. Lumin. 2016, 179, 154–164. [Google Scholar] [CrossRef]
- Douzi, A.; Slimi, S.; Madirov, E.; Serres, J.M.; Solé, R.M.; Ben Salem, E.; Turshatov, A.; Richards, B.S.; Mateos, X. Investigation of luminescence properties and ratiometric thermometry through yellow-to-blue Dy3+ emission in Ca3La7(SiO4)5(PO4)O2 apatite. RSC Adv. 2025, 15, 19623–19639. [Google Scholar] [CrossRef] [PubMed]
- Alsaiari, N.S.; Echeweozo, E.; Kirkbinar, M.; Al-Buriahi, M. Synthesis and radiation attenuation properties of polymethyl methacrylate/apatite-wollastonite composites for advanced shielding applications. Ann. Nucl. Energy 2025, 219, 111466. [Google Scholar] [CrossRef]
- Ma, J.; Wu, L.; Liu, X.; Wang, C.; Huang, B.; Zhao, X.; Ban, C.; Hao, X. Influence of the substitution of CaO by SrO on the structure, degradation and in vitro apatite formation of sol–gel derived SiO2–CaO–SrO–P2O5 system bioactive glasses. Ceram. Int. 2024, 50, 55906–55919. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Xin, S.; Wang, Q.; Li, Y.; Wu, Q.; Wang, C.; Wang, X.; Ding, X.; Geng, W. Geng. Recent development in rare earth doped phosphors for white light emitting diodes. J. Rare Earths 2015, 33, 1–12. [Google Scholar] [CrossRef]
- Fneich, H.; Vermillac, M.; Neuville, D.R.; Blanc, W.; Mehdi, A. Highlighting of LaF3 Reactivity with SiO2 and GeO2 at High Temperature. Ceramics 2022, 5, 182–200. [Google Scholar] [CrossRef]
- Karacasulu, L.; Biesuz, M.; Pastorelli, V.; Vakifahmetoglu, C.; Sglavo, V.M.; Ferraris, M.; Sorarù, G.D. Pressureless joining of soda lime silicate glass using polysilazane-derived silica at near-room temperature. Ceram. Int. 2025, 51, 5747–5753. [Google Scholar] [CrossRef]
- Maeda, H.; Matsuura, F. Effects of heat treatment of silica-based glasses on their static and dynamic wettability. Mater. Chem. Phys. 2024, 314, 128871. [Google Scholar] [CrossRef]
- Stoch, L.; Środa, M. Infrared spectroscopy in the investigation of oxide glasses structure. J. Mol. Struct. 1999, 511–512, 77–84. [Google Scholar] [CrossRef]
- Zawada, A.; Lubas, M.; Przerada, I. Application of Mössbauer spectroscopy and FT-IR to describe coordination of amphoteric ions in structure of glasses from the SiO2–Na2O–MgO–CaO–Al2O3–Fe2O3 system. J. Mol. Struct. 2023, 1285, 135368. [Google Scholar] [CrossRef]
- Yilmaz, G. Structural characterization of glass–ceramics made from fly ash containing SiO2–Al2O3–Fe2O3–CaO and analysis by FT-IR–XRD–SEM methods. J. Mol. Struct. 2012, 1019, 37–42. [Google Scholar] [CrossRef]
- Rao, T.G.V.M.; Kumar, A.R.; Rao, B.H.; Veeraiah, N.; Reddy, M.R. Optical absorption, ESR, FT-IR spectral studies of iron ions in lead oxyfluoro silicate glasses. J. Mol. Struct. 2012, 1021, 7–12. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Almuqrin, A.; Albarzan, B.; Wahab, E.A.; Shaaban, K.S. Studying structural, mechanical, and radiation shielding properties for BaO–Li2B4O7–SiO2–MgO glasses. J. Sci. Adv. Mater. Devices 2025, 10, 100904. [Google Scholar] [CrossRef]






| Glass No. | Reference Chemical Composition of Glass, % mol | ||||
|---|---|---|---|---|---|
| SiO2 | Al2O3 | Na2O | LaO1.5 | LaF3 | |
| Base glass | 45 | 15 | 40 | 0 | 0 |
| 2.5 La | 45 | 15 | 37.5 | 2.5 | 0 |
| 5 La | 45 | 15 | 35 | 5 | 0 |
| 7.5 La | 45 | 15 | 32.5 | 7.5 | 0 |
| 10 La | 45 | 15 | 30 | 10 | 0 |
| 2.5 LaF | 45 | 15 | 37.5 | 0 | 2.5 |
| 5 LaF | 45 | 15 | 35 | 0 | 5 |
| 7.5 LaF | 45 | 15 | 32.5 | 0 | 7.5 |
| 10 LaF | 45 | 15 | 30 | 0 | 10 |
| Glass No. | Tg (±3 °C) 1 | Tx (±3 °C) 2 | Tc (±3 °C) 3 | ΔT (±3 °C) 4 | ΔH (J/g) 5 | ΔCp (J/(g·K)) 6 |
|---|---|---|---|---|---|---|
| Base glass | 512 | 617 | 682 | 105 | 125 | 0.146 |
| La-oxide series | ||||||
| 2.5 La | 559 | 640 | 702 | 81 | 115 | 0.691 |
| 5 La | 576 | 683 | 780 | 107 | 108 | 0.677 |
| 7.5 La | 602 | - | - | - | - | 0.686 |
| 10 La | 589 | 687 | 687 | 98 | 104 | 0.953 |
| La-fluoride series | ||||||
| 2.5 LaF | 549 | 696 | 774 | 147 | 154 | 0.530 |
| 5 LaF | 573 | 690 | 760 | 117 | 414 | 0.235 |
| 7.5 LaF | 581 | 616 | 665 | 35 | 21 | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Środa, M.; Świontek, S.; Szal, M. Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics. Crystals 2025, 15, 859. https://doi.org/10.3390/cryst15100859
Środa M, Świontek S, Szal M. Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics. Crystals. 2025; 15(10):859. https://doi.org/10.3390/cryst15100859
Chicago/Turabian StyleŚroda, Marcin, Szymon Świontek, and Maciej Szal. 2025. "Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics" Crystals 15, no. 10: 859. https://doi.org/10.3390/cryst15100859
APA StyleŚroda, M., Świontek, S., & Szal, M. (2025). Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics. Crystals, 15(10), 859. https://doi.org/10.3390/cryst15100859

