The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, A.A.; Reis, A.R.; Amaral, R.L.; Cruz, J.M.; Romio, P.C.; Seabra, J.O.; Vieira, M.F. Mechanical and microstructural characterisation of bulk Inconel 625 produced by direct laser deposition. Mater. Sci. Eng. A 2022, 838, 142777. [Google Scholar] [CrossRef]
- Li, J.; Yao, J.; Zhao, G.; Li, H.; Li, Y.; Liu, J. The Influence of Different Focusing Currents on the Microstructure Evolution and Wear Properties of a Scanning Electron Beam Modified Inconel 625 Nickel Base Alloy Surface. Crystals 2023, 13, 325. [Google Scholar] [CrossRef]
- Shahwaz, M.; Nath, P.; Sen, I. A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys. J. Alloys Compd. 2022, 907, 164530. [Google Scholar] [CrossRef]
- Zafar, F.; Emadinia, O.; Conceição, J.; Vieira, M.; Reis, A. A Review on Direct Laser Deposition of Inconel 625 and Inconel 625-Based Composites—Challenges and Prospects. Metals 2023, 13, 787. [Google Scholar] [CrossRef]
- Schmeiser, F.; Krohmer, E.; Wagner, C.; Schell, N.; Uhlmann, E.; Reimers, W. In situ microstructure analysis of Inconel 625 during laser powder bed fusion. J. Mater. Sci. 2022, 57, 9663–9677. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Li, J.; Wan, H.; Yu, L.; Liu, B. Microstructure Evolution and Mechanical Properties of Inconel 625 Foils. J. Mater. Eng. Perform. 2023, 32, 6576–6587. [Google Scholar] [CrossRef]
- Poulin, J.-R.; Kreitcberg, A.; Brailovski, V. Effect of hot isostatic pressing of laser powder bed fused Inconel 625 with purposely induced defects on the residual porosity and fatigue crack propagation behavior. Addit. Manuf. 2021, 47, 102324. [Google Scholar] [CrossRef]
- Osipovich, K.; Kalashnikov, K.; Chumaevskii, A.; Gurianov, D.; Kalashnikova, T.; Vorontsov, A.; Zykova, A.; Utyaganova, V.; Panfilov, A.; Nikolaeva, A.; et al. Wire-Feed Electron Beam Additive Manufacturing: A Review. Metals 2023, 13, 279. [Google Scholar] [CrossRef]
- Fernandez-Zelaia, P.; Kirka, M.M.; Rossy, A.M.; Lee, Y.; Dryepondt, S.N. Dryepondt, Nickel-based superalloy single crystals fabricated via electron beam melting. Acta Mater. 2021, 216, 117133. [Google Scholar] [CrossRef]
- Lee, D.; Park, S.; Lee, C.-H.; Hong, H.-U.; Oh, J.; So, T.-Y.; Kim, W.-S.; Seo, D.; Han, J.; Ko, S.-H.; et al. Correlation between microstructure and mechanical properties in additively manufactured Inconel 718 superalloys with low and high electron beam currents. J. Mater. Res. Technol. 2024, 28, 2410–2419. [Google Scholar] [CrossRef]
- Karapuzha, A.S.; Fraser, D.; Zhu, Y.; Wu, X.; Huang, A. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion. J. Mater. Res. Technol. 2022, 98, 99–117. [Google Scholar] [CrossRef]
- Fortuna, S.; Gurianov, D.; Nikonov, S.; Osipovich, K.; Kolubaev, E. On the Control of Elemental Composition, Macro-, and Microstructure of Directionally Solidified Additive Products from Nickel-Based Alloy. Metals 2023, 13, 1457. [Google Scholar] [CrossRef]
- Astafurov, S.V.; Mel’nikov, E.V.; Astafurova, E.G.; Kolubaev, E.A. Phase composition and microstructure of intermetallic alloys obtained using electron-beam additive manufacturing. Izvestiya. Ferr. Metall. 2024, 67, 401–408. [Google Scholar] [CrossRef]
- Song, D.; Wang, T.; Wei, L.; Jiang, S. Microstructure evolution and functional response of NiTi shape memory alloy manufactured by dual-wire electron beam freeform fabrication. J. Manuf. Process. 2024, 119, 842–855. [Google Scholar] [CrossRef]
- Wahlmann, B.; Körner, C.; Nunn, M. Electron beam wire cladding of nickel alloys and stainless steel on a reactor pressure vessel steel. Mater. Sci. Eng. A 2021, 811, 141082. [Google Scholar] [CrossRef]
- Sasikumar, R.; Kannan, A.R.; Kumar, S.M.; Pramod, R.; Kumar, N.P.; Shanmugam, N.S.; Palguna, Y.; Sivankalai, S. Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives. CIRP J. Manuf. Sci. Technol. 2022, 38, 230–242. [Google Scholar] [CrossRef]
- Bölükbaşi, O.S.; Serindağ, T.; Gürol, U.; Günen, A.; Çam, G. Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP J. Manuf. Sci. Technol. 2022, 46, 89–97. [Google Scholar] [CrossRef]
- Motwani, A.; Vamsi, P.K.; Puri, Y.; Kumar, A. Post-processing of wire arc additive manufactured Inconel-625 thin structure by electro-discharge machining with TLBO assistance. Mater. Lett. 2023, 348, 134672. [Google Scholar] [CrossRef]
- Zhang, W.; Lei, Y.; Meng, W.; Ma, Q.; Yin, X.; Guo, L. Effect of Deposition Sequence on Microstructure and Properties of 316L and Inconel 625 Bimetallic Structure by Wire Arc Additive Manufacturing. J. Materi. Eng. Perform. 2021, 30, 8972–8983. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Xie, J.; Yu, Z.; Wang, Y.; Chen, J.; Lu, H.; Yu, C. Effects of thermal history of in-situ thermal management on as-built property heterogeneity of plasma arc additively manufactured Inconel 625. J. Mater. Res. Technol. 2023, 25, 2654–2675. [Google Scholar] [CrossRef]
- Tarasov, S.Y.; Filippov, A.V.; Shamarin, N.N.; Fortuna, S.V.; Maier, G.G.; Kolubaev, E.A. Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J. Alloys Compd. 2019, 803, 364–370. [Google Scholar] [CrossRef]
- Kolubaev, E.A.; Rubtsov, V.E.; Chumaevsky, A.V.; Astafurova, E.G. Micro-, Meso- and Macrostructural Design of Bulk Metallic and Polymetallic Materials by Wire-Feed Electron-Beam Additive Manufacturing. Phys. Mesomech. 2022, 25, 479–491. [Google Scholar] [CrossRef]
- Gan, Z.; Lian, Y.; Lin, S.E.; Jones, K.K.; Liu, W.K.; Wagner, G.J. Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625. Integr. Mater. Manuf. Innov. 2019, 8, 178–193. [Google Scholar] [CrossRef]
- Yu, L.-J.; Emmanuelle, A. Marquis, Precipitation behavior of Alloy 625 and Alloy 625 plus. J. Alloys Compd. 2019, 811, 151916. [Google Scholar] [CrossRef]
- Liu, X.; Fan, J.; Zhang, P.; Cao, K.; Wang, Z.; Chen, F.; Liu, D.; Tang, B.; Kou, H.; Li, J. Influence of heat treatment on Inconel 625 superalloy sheet: Carbides, γ″, δ phase precipitation and tensile deformation behavior. J. Alloys Compd. 2023, 930, 167522. [Google Scholar] [CrossRef]
- Caleb, O.; Yenusah, C.O.; Ji, Y.; Liu, Y.; Stone, T.W.; Horstemeyer, M.F.; Chen, L.Q.; Chen, L. Three-dimensional Phase-field simulation of γ″ precipitation kinetics in Inconel 625 during heat treatment. Comput. Mater. Sci. 2021, 187, 110123. [Google Scholar] [CrossRef]
- Floreen, S.; Fuchs, G.E.; Yang, W.J. The Metallurgy of Alloy 625, Superalloys 718,625,706 and Various Derivatives; Loria, E.A., Ed.; The Minerals, Metals&Materials Society: Pittsburgh, PA, USA, 1994. [Google Scholar]
- Singh, J.B. Alloy 625: Microstructure, Properties and Performance; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Hack, H.; Link, R.; Knudsen, E.; Baker, B.; Olig, S. Mechanical properties of additive manufactured nickel alloy 625. Addit. Manuf. 2017, 14, 105–115. [Google Scholar] [CrossRef]
- Luna, V.; Trujillo, L.; Gamon, A.; Arrieta, E.; Murr, L.E.; Wicker, R.B.; Katsarelis, C.; Gradl, P.R.; Medina, F. Comprehensive and Comparative Heat Treatment of Additively Manufactured Inconel 625 Alloy and Corresponding Microstructures and Mechanical Properties. J. Manuf. Mater. Process. 2022, 6, 107. [Google Scholar] [CrossRef]
Ni | Cr | Mo | Nb | Fe | C * | Al | Ti | Co | Mn + Si + S + P |
---|---|---|---|---|---|---|---|---|---|
58.63 | 21.7 | 8.78 | 3.95 | 4.5 | - | 0.2 | 0.19 | 0.95 | 1.1 |
Additive Process | Current, A | Accelerating Voltage, V | Printing Velocity, mm/min | Heat Input, kJ/mm | Environment |
---|---|---|---|---|---|
WEBAM | 43 × 10−3–27 × 10−3 | 30 × 103 | 220 | 0.35–0.22 | Vacuum |
WAAM | 111 | 17.4 | 500 | 0.23 | Argon |
Additive Process | Bottom | Middle | Top |
---|---|---|---|
WEBAM | 20.3 ± 2.7 | 24.1 ± 1.1 | 25.2 ± 0.9 |
WAAM | 10.0 ± 0.6 | 10.6 ± 3.3 | 16.5 ± 1.4 |
Additive Process | Bottom | Middle | Top |
---|---|---|---|
WEBAM | 155.0 ± 40.3 | 105.2 ± 9.3 | 96.4 ± 6.9 |
WAAM | 405.9 ± 47.4 | 366.6 ± 62.4 | 154.6 ± 23.89 |
Additive Technology | EDS Probe (Figure 6, Figure 7 and Figure 8) | Phase | Al | Ti | Cr | Fe | Co | Ni | Nb | Mo | O |
---|---|---|---|---|---|---|---|---|---|---|---|
WEBAM | 1 | MC | 0.01 | 41.73 | 3.42 | 0.53 | 0.38 | 5.82 | 47.14 | 1.09 | - |
2 | MC | - | 2.71 | 2.25 | 0.67 | 0.55 | 5.14 | 85.81 | 2.75 | - | |
3 | γ | 0.05 | 0.15 | 19.62 | 0.74 | 0.40 | 63.03 | 6.60 | 8.99 | - | |
WAAM | 4 | Al2O3 | 28.28 | - | 0.38 | - | - | 0.68 | - | - | 70.66 |
5 | γ | 0.34 | 0.03 | 26.80 | 0.63 | 0.44 | 62.92 | 1.69 | 7.17 | - | |
6 | Al2O3 | 25.06 | - | 2.02 | - | - | 5.56 | - | - | 67.38 | |
7 | MC | - | 28.48 | 6.66 | 0.63 | 0.02 | 11.33 | 54.19 | - | - | |
8 | γ | 0.46 | 0.02 | 23.61 | 0.48 | 0.15 | 62.49 | 4.46 | 8.36 | - | |
9 | MC | - | 1.64 | 7.52 | 0.18 | 0.01 | 15.25 | 68.45 | 7.28 | - |
Additive Process | Direction of Samples Cutting | UTS, MPa | YS, MPa | δ, % |
---|---|---|---|---|
WEBAM | Vertical | 644 ± 44 | 343 ± 35 | 72 ± 3 |
Horizontal | 649 ± 37 | 563 ± 19 | 109 ± 3 | |
WAAM | Vertical | 625 ± 8 | 327 ± 6 | 71 ± 4 |
Horizontal | 652 ± 19 | 536 ± 14 | 104 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurianov, D.; Fortuna, S.; Tarasov, S.; Semenchuk, V.; Shamarin, N.; Chumaevskii, A.; Rubtsov, V.; Korsunsky, A.M.; Kolubaev, E. The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing. Crystals 2025, 15, 848. https://doi.org/10.3390/cryst15100848
Gurianov D, Fortuna S, Tarasov S, Semenchuk V, Shamarin N, Chumaevskii A, Rubtsov V, Korsunsky AM, Kolubaev E. The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing. Crystals. 2025; 15(10):848. https://doi.org/10.3390/cryst15100848
Chicago/Turabian StyleGurianov, Denis, Sergey Fortuna, Sergei Tarasov, Vyacheslav Semenchuk, Nikolay Shamarin, Andrey Chumaevskii, Valery Rubtsov, Alexander M. Korsunsky, and Evgeny Kolubaev. 2025. "The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing" Crystals 15, no. 10: 848. https://doi.org/10.3390/cryst15100848
APA StyleGurianov, D., Fortuna, S., Tarasov, S., Semenchuk, V., Shamarin, N., Chumaevskii, A., Rubtsov, V., Korsunsky, A. M., & Kolubaev, E. (2025). The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing. Crystals, 15(10), 848. https://doi.org/10.3390/cryst15100848