Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate
Abstract
1. Introduction
2. Photonic Properties of Thin-Film Lithium Niobate
3. The Working Principle of Lithium Niobate Electro-Optic Modulator
3.1. Electro-Optic Effect
3.2. Electro-Optic Modulation
4. Lithium Niobate Waveguide Fabrication Processes
4.1. Rib Load
4.2. Dry Etch
4.3. Silicon on Insulator Bond
5. Types of Waveguide-Based Electro-Optic Modulators
5.1. Basic Structure
5.2. Phase Modulator
5.3. Amplitude Modulator
5.4. In-Phase and Quadrature Modulators
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Fan, Y.; Guo, F.; Zhang, S.; Zhao, L. Investigation on photorefractive properties of doped lithium niobate. Cryst. Res. Technol. 2007, 42, 1014–1017. [Google Scholar] [CrossRef]
- Sinatkas, G.; Christopoulos, T.; Tsilipakos, O.; Kriezis, E.E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 2021, 130, 010901. [Google Scholar] [CrossRef]
- Capmany, J.; Fernández-Pousa, C.R. Quantum modelling of electro-optic modulators. Laser Photonics Rev. 2011, 5, 750–772. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, H.; Feng, H.; Guo, Y.; Shen, B.; Sun, D.; Tao, Y.; Han, C.; He, Y.; Bowers, J.E. Ultrabroadband on-chip photonics for full-spectrum wireless communications. Nature 2025, 645, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, 6627. [Google Scholar] [CrossRef]
- Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv. Opt. Mater. 2021, 9, 2100789. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, M.; Chen, Z.; Ai, S.; Kentsch, U.; Zhou, S.; Jia, Y.; Chen, F.; Liu, H. A novel approach towards robust construction of physical colors on lithium niobate crystal. Opto-Electron. Adv. 2025, 8, 240193. [Google Scholar]
- Renaud, D.; Assumpcao, D.R.; Joe, G.; Shams-Ansari, A.; Zhu, D.; Hu, Y.; Sinclair, N.; Loncar, M. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 2023, 14, 1496. [Google Scholar] [CrossRef]
- Wooten, E.L.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; McBrien, G.J. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Guenter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Ruan, Z.; Chen, K.; Wang, Z.; Fan, X.; Gan, R.; Qi, L.; Xie, Y.; Guo, C.; Yang, Z.; Cui, N. High-performance electro-optic modulator on silicon nitride platform with heterogeneous integration of lithium niobate. Laser Photonics Rev. 2023, 17, 2200327. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Chen, H.; Li, S.; Ma, J.; Li, W.; Niu, Y.; Qin, Q.; Yang, S.; Deng, Y. High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide. Nanophotonics 2024, 13, 3477–3484. [Google Scholar] [CrossRef]
- Liu, J.M. Photonic Devices; Cambridge University Press: Cambridge, UK, 2009; pp. 603–709. [Google Scholar]
- Wang, C.; Zhang, M.; Lončar, M. High-Q lithium niobate microcavities and their applications. In Ultra-High-Q Optical Microcavities; World Scientific: London, UK, 2021; pp. 1–35. [Google Scholar]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Parriaux, A.; Hammani, K.; Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 2020, 12, 223–287. [Google Scholar] [CrossRef]
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984; pp. 327–335. [Google Scholar]
- Yariv, A.; Yeh, P.; Yariv, A. Photonics: Optical Electronics in Modern Communications; Oxford university Press: New York, NY, USA, 2007; pp. 354–404. [Google Scholar]
- Hoessbacher, C. Plasmonic Switches and Modulators for Optical Communications; ETH Zurich: Zürich, Switzerland, 2017; pp. 26–28. [Google Scholar]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Rao, A.; Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 3400114. [Google Scholar] [CrossRef]
- Rao, A.; Patil, A.; Rabiei, P.; Honardoost, A.; DeSalvo, R.; Paolella, A.; Fathpour, S. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 2016, 41, 5700–5703. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, L.; Sun, Y.; Chen, N.-K.; Jia, Y.; Ren, Y. Silicon rib-loaded LiNbO3 waveguide polarization beam splitter based on bound state in the continuum design. Opt. Commun. 2021, 497, 127190. [Google Scholar] [CrossRef]
- Rabiei, P.; Ma, J.; Khan, S.; Chiles, J.; Fathpour, S. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 2013, 21, 25573–25581. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Ma, J.; Khan, S.; Chiles, J.; Fathpour, S. Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum. Opt. Express 2013, 21, 6967–6972. [Google Scholar] [CrossRef]
- Li, S.; Cai, L.; Wang, Y.; Jiang, Y.; Hu, H. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express 2015, 23, 24212–24219. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wang, Z.; Shen, Y.; Yang, L.; Niu, L.; Wang, H.; Zhang, W.; Xu, P.; Gan, F. Compact photonic device based on chalcogenide glass loaded lithium niobate on insulator. Opt. Lett. 2024, 50, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Patil, A.; Chiles, J.; Malinowski, M.; Novak, S.; Richardson, K.; Rabiei, P.; Fathpour, S. Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 10–15 May 2015; Optica Publishing Group: Washington, DC, USA, 2015; Volume 10, p. STu2F.4. [Google Scholar]
- Rao, A.; Patil, A.; Chiles, J.; Malinowski, M.; Novak, S.; Richardson, K.; Rabiei, P.; Fathpour, S. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 2015, 23, 22746–22752. [Google Scholar] [CrossRef]
- Chiles, J.; Malinowski, M.; Rao, A.; Novak, S.; Richardson, K.; Fathpour, S. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching. Appl. Phys. Lett. 2015, 106, 111110. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Shi, S.; Zablocki, M.; Yao, P.; Prather, D.W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 2019, 44, 618–621. [Google Scholar] [CrossRef]
- Rao, A.; Malinowski, M.; Honardoost, A.; Talukder, J.R.; Rabiei, P.; Delfyett, P.; Fathpour, S. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express 2016, 24, 29941–29947. [Google Scholar] [CrossRef]
- Webster, M.; Pafchek, R.; Mitchell, A.; Koch, T. Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides. IEEE Photonics Technol. Lett. 2007, 19, 429–431. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, X. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl. 2020, 9, 1. [Google Scholar] [CrossRef]
- Bakish, I.; Califa, R.; Ilovitsh, T.; Artel, V.; Winzer, G.; Voigt, K.; Zimmermann, L.; Shekel, E.; Sukenik, C.N.; Zadok, A. Voltage-induced phase shift in a hybrid LiNbO3-on-silicon Mach-Zehnder interferometer. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics, Rio Grande, Puerto Rico, 14–17 July 2013; Optica Publishing Group: Washington, DC, USA, 2013; Volume 14, p. IW4A. 2. [Google Scholar]
- Chiles, J.; Fathpour, S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica 2014, 1, 350–355. [Google Scholar] [CrossRef]
- Cao, L.; Aboketaf, A.; Wang, Z.; Preble, S. Hybrid amorphous silicon (a-Si: H)–LiNbO3 electro-optic modulator. Opt. Commun. 2014, 330, 40–44. [Google Scholar] [CrossRef]
- Shen, B.; Hu, D.; Dai, C.; Yu, X.; Tan, X.; Sun, J.; Jiang, J.; Jiang, A. Advanced etching techniques of LiNbO3 nanodevices. Nanomaterials 2023, 13, 2789. [Google Scholar] [CrossRef]
- Kozlov, A.; Moskalev, D.; Salgaeva, U.; Bulatova, A.; Krishtop, V.; Volyntsev, A.; Syuy, A. Reactive ion etching of x-cut LiNbO3 in an ICP/TCP system for the fabrication of an optical ridge waveguide. Appl. Sci. 2023, 13, 2097. [Google Scholar] [CrossRef]
- Bahadori, M.; Yang, Y.; Goddard, L.L.; Gong, S. High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform. Opt. Express 2019, 27, 22025–22039. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wang, C.; Zhu, Y.; Wu, J.; Chen, Y.; Li, Z.; Huang, K.; Zhao, X.; Song, S.; Zhang, J. A comparative study of dry-etching nanophotonic devices on a LiNbO3-on-insulator material platform. In Proceedings of the 4th Optics Young Scientist Summit (OYSS 2020), Ningbo, China, 4–7 December 2020; SPIE: Washington, DC, USA, 2021; Volume 28, pp. 212–217. [Google Scholar]
- Li, X.P.; Chen, K.X.; Hu, Z.F. Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching. Opt. Mater. Express 2018, 8, 1322–1327. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Fang, X.; Chen, X.; Zhu, L.; Zhang, F.; Chen, Z.; Li, Y. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth. Chin. Opt. Lett. 2022, 20, 022502. [Google Scholar] [CrossRef]
- Rao, A.; Abdelsalam, K.; Sjaardema, T.; Honardoost, A.; Camacho-Gonzalez, G.F.; Fathpour, S. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1cm−2. Opt. Express 2019, 27, 25920–25930. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Safian, R.; Teng, M.; Zhuang, L.; Chakravarty, S. Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer. Opt. Express 2020, 28, 25843–25857. [Google Scholar] [CrossRef]
- Valdez, F.; Mere, V.; Wang, X.; Boynton, N.; Friedmann, T.A.; Arterburn, S.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L.; Trotter, D.C. 110 GHz, 110 mW hybrid silicon-lithium niobate Mach-Zehnder modulator. Sci. Rep. 2022, 12, 18611. [Google Scholar] [CrossRef]
- Valdez, F.; Mere, V.; Boynton, N.; Friedmann, T.A.; Arterburn, S.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L.; Trotter, D.C.; Lentine, A.L. Buried-electrode hybrid bonded thin-film lithium niobate electro-optic Mach-Zehnder modulators. IEEE Photonics Technol. Lett. 2023, 35, 633–636. [Google Scholar] [CrossRef]
- Weigel, P.O.; Savanier, M.; DeRose, C.T.; Pomerene, A.T.; Starbuck, A.L.; Lentine, A.L.; Stenger, V.; Mookherjea, S. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 2016, 6, 22301. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wood, M.G.; Reano, R.M. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. Opt. Express 2013, 21, 27003–27010. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Nagy, J.; Reano, R.M. Highly linear ring modulator from hybrid silicon and lithium niobate. Opt. Express 2015, 23, 13255–13264. [Google Scholar] [CrossRef]
- Weigel, P.O.; Zhao, J.; Fang, K.; Al-Rubaye, H.; Trotter, D.; Hood, D.; Mudrick, J.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 2018, 26, 23728–23739. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Weigel, P.O.; Zhao, J.; Ruesing, M.; Mookherjea, S. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics 2019, 4, 096101. [Google Scholar] [CrossRef]
- Mercante, A.J.; Shi, S.; Yao, P.; Xie, L.; Weikle, R.M.; Prather, D.W. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 2018, 26, 14810–14816. [Google Scholar] [CrossRef]
- Churaev, M.; Wang, R.N.; Riedhauser, A.; Snigirev, V.; Blésin, T.; Möhl, C.; Anderson, M.H.; Siddharth, A.; Popoff, Y.; Drechsler, U. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 2023, 14, 3499. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Campanella, C.E.; Armenise, M.N. Photonic technologies for angular velocity sensing. Adv. Opt. Photonics 2010, 2, 370–404. [Google Scholar] [CrossRef]
- Ren, T.; Zhang, M.; Wang, C.; Shao, L.; Reimer, C.; Zhang, Y.; King, O.; Esman, R.; Cullen, T.; Lončar, M. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett. 2019, 31, 889–892. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B.; Liu, D.; Jiao, H.; Wang, X.; Liu, N.; Feng, L. Linewidth-related residual intensity modulation in lithium niobate phase modulators. Appl. Opt. 2020, 59, 4739–4743. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Barton III, D.; Cheng, R.; Reimer, C.; Kharel, P.; He, L.; Shao, L.; Zhu, D.; Hu, Y.; Grant, H.R. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 2022, 612, 252–258. [Google Scholar] [CrossRef]
- Du, Y.; Zou, X.; Zou, F.; Pan, W.; Yan, L.; Zhao, Q.; Liu, N. Novel Folded Structure TFLN Recycling Phase Modulator Enabling Large Low-Vπ Bandwidth and Efficient Microwave–Optical Velocity Matching. Laser Photonics Rev. 2024, 18, 2400787. [Google Scholar] [CrossRef]
- Zhu, X.; De Freitas, M.M.; Shi, S.; Yao, P.; Wang, F.; Cullen, C.J.; Hinkle, M.; Prather, D.W. Folded Sub-1V Vπ Thin Film Lithium Niobate Phase Modulator. IEEE Photonics Technol. Lett. 2025, 5, 301–304. [Google Scholar] [CrossRef]
- Cheng, R.; Ren, X.; Reimer, C.; Yeh, M.; Rosborough, V.; Musolf, J.; Johansson, L.; Zhang, M.; Yu, M.; Lončar, M. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform. Opt. Lett. 2024, 49, 3504–3507. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liang, Y.; Chen, J.; Yu, J.; Qi, J.; Song, L.; Liu, J.; Liu, Z.; Fang, Z.; Qi, H. Compact low-half-wave-voltage thin film lithium niobate electro-optic phase modulator fabricated by photolithography-assisted chemo-mechanical etching (PLACE). Opt. Lett. 2024, 49, 5783–5786. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, H.; Lin, H.; Bai, J.; Zhang, M.; Liu, X.; Cao, B.; Tian, Y.; Xiao, L. Ultra-compact electro-optic phase modulator based on a lithium niobate topological slow light waveguide. Opt. Express 2024, 32, 3980–3988. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, L.; Yang, J.; Chen, Z.; Zhang, K.; Shum, K.-M.; Zhu, D.; Chan, C.H.; Lončar, M.; Wang, C. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 2022, 10, 2380–2387. [Google Scholar] [CrossRef]
- Xue, Y.; Gan, R.; Chen, K.; Chen, G.; Ruan, Z.; Zhang, J.; Liu, J.; Dai, D.; Guo, C.; Liu, L. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 2022, 9, 1131–1137. [Google Scholar] [CrossRef]
- Thomaschewski, M.; Zenin, V.A.; Fiedler, S.; Wolff, C.; Bozhevolnyi, S.I. Plasmonic lithium niobate Mach–Zehnder modulators. Nano Lett. 2022, 22, 6471–6475. [Google Scholar] [CrossRef]
- Li, Y.; Lan, T.; Yang, D.; Bao, J.; Xiang, M.; Yang, F.; Wang, Z. High-performance Mach–Zehnder modulator based on thin-film lithium niobate with low voltage-length product. ACS Omega 2023, 8, 9644–9651. [Google Scholar] [CrossRef] [PubMed]
- Arab Juneghani, F.; Gholipour Vazimali, M.; Zhao, J.; Chen, X.; Le, S.T.; Chen, H.; Ordouie, E.; Fontaine, N.K.; Fathpour, S. Thin-film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz. Adv. Photonics Res. 2023, 4, 2200216. [Google Scholar] [CrossRef]
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, Y.; Pittalà, F.; Tang, J.; He, M.; Ng, W.C.; Wang, J.; Ruan, Z.; Tang, X.; Kuschnerov, M. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 2022, 9, 61–62. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Tang, J.; Wang, J.; Liu, L.; Ma, H.; Yu, S.; Zheng, B.; Cai, X. Attojoule/bit folded thin film lithium niobate coherent modulators using air-bridge structures. APL Photonics 2023, 8, 066104. [Google Scholar] [CrossRef]
- Larocque, H.; Vitullo, D.L.; Sludds, A.; Sattari, H.; Christen, I.; Choong, G.; Prieto, I.; Leo, J.; Zarebidaki, H.; Lohani, S. Photonic Crystal Cavity IQ Modulators in Thin-Film Lithium Niobate. ACS Photonics 2024, 11, 3860–3869. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Q.; Ma, X.; Liu, G.; Dai, X.; Lu, Q.; Guo, W. High performance thin-film lithium niobate modulator on silicon substrate with a thick silica buffer layer. Opt. Express 2025, 33, 20334–20344. [Google Scholar] [CrossRef]
- Lei, X.; Wang, G.; Tan, H.; Tang, J.; Zhang, H.; Yang, M.; Lin, Z.; Zhu, L.; Yan, S.; Cai, X. Optical carrier-suppressed single sideband modulation based on a thin-film lithium niobate IQ modulator for FMCW ranging application. J. Light. Technol. 2024, 42, 6832–6838. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lu, X.; Qiao, D.; Zhao, X. Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate. Crystals 2025, 15, 846. https://doi.org/10.3390/cryst15100846
Wang J, Lu X, Qiao D, Zhao X. Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate. Crystals. 2025; 15(10):846. https://doi.org/10.3390/cryst15100846
Chicago/Turabian StyleWang, Jingsong, Xun Lu, Di Qiao, and Xingjuan Zhao. 2025. "Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate" Crystals 15, no. 10: 846. https://doi.org/10.3390/cryst15100846
APA StyleWang, J., Lu, X., Qiao, D., & Zhao, X. (2025). Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate. Crystals, 15(10), 846. https://doi.org/10.3390/cryst15100846