The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Growth and Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abderrahmane, A.; Jung, P.-G.; Kim, N.-H.; Ko, P.J.; Sandhu, A. Gate-Tunable Optoelectronic Properties of a Nano-Layered GaSe Photodetector. Opt. Mater. Express 2017, 7, 587–592. [Google Scholar] [CrossRef]
- Saroj, R.K.; Guha, P.; Lee, S.; Yoo, D.; Lee, E.; Lee, J.; Kim, M.; Yi, G.-C. Photodetector Arrays Based on MBE-Grown GaSe/Graphene Heterostructure. Adv. Opt. Mater. 2022, 10, 2200332. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Q.; Chai, Z.; Wei, B.; Wang, J.; Liu, Y.; Shi, Y.; Wang, Z.; Li, J. Ultrafast Growth of High-Quality Large-Sized GaSe Crystals by Liquid Metal Promoter. Nano Res. 2022, 15, 4677–4681. [Google Scholar] [CrossRef]
- Sorifi, S.; Kaushik, S.; Singh, R. A GaSe/Si-Based Vertical 2D/3D Heterojunction for High-Performance Self-Driven Photodetectors. Nanoscale Adv. 2022, 4, 479–490. [Google Scholar] [CrossRef]
- Zappia, M.I.; Bianca, G.; Bellani, S.; Curreli, N.; Sofer, Z.; Serri, M.; Najafi, L.; Piccinni, M.; Oropesa-Nuñez, R.; Marvan, P.; et al. Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-Type Photodetectors. J. Phys. Chem. C 2021, 125, 11857–11866. [Google Scholar] [CrossRef] [PubMed]
- Zappia, M.I.; Bianca, G.; Bellani, S.; Serri, M.; Najafi, L.; Oropesa-Nuñez, R.; Martín-García, B.; Bouša, D.; Sedmidubský, D.; Pellegrini, V.; et al. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 1909572. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Wu, F.; Hou, Y.; Qiao, J.; Ma, X.; Bai, H.; Ma, B.; Li, J. Investigation on Photocatalytic Property of SiH/GaSe and SiH/InSe Heterojunctions for Photocatalytic Water Splitting. Int. J. Hydrogen Energy 2022, 47, 31295–31308. [Google Scholar] [CrossRef]
- Zhang, W.X.; Hou, J.T.; Bai, M.; He, C.; Wen, J.R. Construction of Novel ZnO/Ga2SSe (GaSe) VdW Heterostructures as Efficient Catalysts for Water Splitting. Appl. Surf. Sci. 2023, 634, 157648. [Google Scholar] [CrossRef]
- Ahmad, H.; Reduan, S.A.; Sharbirin, A.S.; Ismail, M.F.; Zulkifli, M.Z. Q-Switched Thulium/Holmium Fiber Laser with Gallium Selenide. Optik 2018, 175, 87–92. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, F.; Zhang, Y.; Deng, H.; Shu, B.; Zhang, J.; Yi, T.; Dai, Y.; Fan, C.; Su, W.; et al. Lab-on-Fiber Based on Optimized Gallium Selenide for Femtosecond Mode-Locked Lasers and Fiber-Compatible Photodetectors. Adv. Photonics Res. 2023, 4, 2200283. [Google Scholar] [CrossRef]
- Guo, J.; Xie, J.-J.; Li, D.-J.; Yang, G.-L.; Chen, F.; Wang, C.-R.; Zhang, L.-M.; Andreev, Y.M.; Kokh, K.A.; Lanskii, G.V.; et al. Doped GaSe Crystals for Laser Frequency Conversion. Light Sci. Appl. 2015, 4, e362. [Google Scholar] [CrossRef]
- Elafandi, S.; Ahmadi, Z.; Azam, N.; Mahjouri-Samani, M. Gas-Phase Formation of Highly Luminescent 2D GaSe Nanoparticle Ensembles in a Nonequilibrium Laser Ablation Process. Nanomaterials 2020, 10, 908. [Google Scholar] [CrossRef]
- Liu, G.; Xia, S.; Hou, B.; Gao, T.; Zhang, R. Mechanical Stabilities and Nonlinear Properties of Monolayer Gallium Selenide under Tension. Mod. Phys. Lett. B 2015, 29, 1550049. [Google Scholar] [CrossRef]
- Karvonen, L.; Säynätjoki, A.; Mehravar, S.; Rodriguez, R.D.; Hartmann, S.; Zahn, D.R.T.; Honkanen, S.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; et al. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy. Sci. Rep. 2015, 5, 10334. [Google Scholar] [CrossRef]
- Shevchenko, O.N.; Nikolaev, N.A.; Antsygin, V.D. Estimation of the Nonlinear-Optical Coefficient of GaSe:S Crystals According to Electro-Optical Measurements. In Proceedings of the XVI International Conference on Pulsed Lasers and Laser Applications, Tomsk, Russia, 10–15 September 2023; Volume 12920, p. 129200G. [Google Scholar]
- Thanh, L.C.; Depeursinge, C. Fine Structure of the Exciton Spectrum in GaSe. Solid State Commun. 1978, 25, 499–503. [Google Scholar] [CrossRef]
- Bergeron, A.; Ibrahim, J.; Leonelli, R.; Francoeur, S. Oxidation Dynamics of Ultrathin GaSe Probed through Raman Spectroscopy. Appl. Phys. Lett. 2017, 110, 241901. [Google Scholar] [CrossRef]
- Hoff, R.M.; Irwin, J.C.; Lieth, R.M.A. Raman Scattering in GaSe. Can. J. Phys. 1975, 53, 1606–1614. [Google Scholar] [CrossRef]
- Irwin, J.C.; Hoff, R.M.; Clayman, B.P.; Bromley, R.A. Long Wavelength Lattice Vibrations in GaS and GaSe. Solid State Commun. 1973, 13, 1531–1536. [Google Scholar] [CrossRef]
- Wieting, T.J.; Verble, J.L. Interlayer Bonding and the Lattice Vibrations of β-GaSe. Phys. Rev. B 1972, 5, 1473–1479. [Google Scholar] [CrossRef]
- Capozzi, V.; Montagna, M. Optical Spectroscopy of Extrinsic Recombinations in Gallium Selenide. Phys. Rev. B 1989, 40, 3182–3190. [Google Scholar] [CrossRef]
- Wei, C.; Chen, X.; Li, D.; Su, H.; He, H.; Dai, J.-F. Bound Exciton and Free Exciton States in GaSe Thin Slab. Sci. Rep. 2016, 6, 33890. [Google Scholar] [CrossRef]
- Zalamai, V.V.; Syrbu, N.N.; Stamov, I.G.; Beril, S.I. Wannier–Mott Excitons in GaSe Single Crystals. J. Opt. 2020, 22, 85402. [Google Scholar] [CrossRef]
- Usman, M.; Golovynskyi, S.; Dong, D.; Lin, Y.; Yue, Z.; Imran, M.; Li, B.; Wu, H.; Wang, L. Raman Scattering and Exciton Photoluminescence in Few-Layer GaSe: Thickness- and Temperature-Dependent Behaviors. J. Phys. Chem. C 2022, 126, 10459–10468. [Google Scholar] [CrossRef]
- Rakhlin, M.V.; Evropeitsev, E.A.; Eliseyev, I.A.; Toropov, A.A.; Shubina, T.V. Exciton Structure and Recombination Dynamics in GaSe Crystals. Bull. Russ. Acad. Sci. Phys. 2023, 87, S60–S65. [Google Scholar] [CrossRef]
- Akhundov, G.A.; Gasanova, N.A.; Nizametdinova, M.A. Optical Absorption, Reflection, and Dispersion of GaS and GaSe Layer Crystals. Phys. Status Solidi 1966, 15, K109–K113. [Google Scholar] [CrossRef]
- Balzarotti, A.; Piacentini, M. Excitonic Effect at the Direct Absorption Edges of GaSe. Solid State Commun. 1972, 10, 421–425. [Google Scholar] [CrossRef]
- Gauthier, M.; Polian, A.; Besson, J.M.; Chevy, A. Optical Properties of Gallium Selenide under High Pressure. Phys. Rev. B 1989, 40, 3837–3854. [Google Scholar] [CrossRef]
- Isik, M.; Tugay, E.; Gasanly, N.M. Temperature-Dependent Optical Properties of GaSe Layered Single Crystals. Philos. Mag. 2016, 96, 2564–2573. [Google Scholar] [CrossRef]
- Choi, S.G.; Levi, D.H.; Martinez-Tomas, C.; Muñoz Sanjosé, V. Above-Bandgap Ordinary Optical Properties of GaSe Single Crystal. J. Appl. Phys. 2009, 106, 53517. [Google Scholar] [CrossRef]
- Meyer, F.; de Kluizenaar, E.E.; Engelsen, D. den Ellipsometric Determination of the Optical Anisotropy of Gallium Selenide. J. Opt. Soc. Am. 1973, 63, 529–532. [Google Scholar] [CrossRef]
- Le, L.V.; Nguyen, T.-T.; Nguyen, X.A.; Cuong, D.D.; Nguyen, T.H.; Nguyen, V.Q.; Cho, S.; Kim, Y.D.; Kim, T.J. A Systematic Study of the Temperature Dependence of the Dielectric Function of GaSe Uniaxial Crystals from 27 to 300 K. Nanomaterials 2024, 14, 839. [Google Scholar] [CrossRef]
- Voitchovsky, J.P.; Mercier, A. Photoluminescence OfGaSe. Nuovo Cim. B 1974, 22, 273–292. [Google Scholar] [CrossRef]
- Antonioli, G.; Bianchi, D.; Emiliani, U.; Podini, P.; Franzosi, P. Optical Properties and Electron-Phonon Interaction in GaSe. Nuovo Cim. B 1979, 54, 211–227. [Google Scholar] [CrossRef]
- Le Toullec, R.; Piccioli, N.; Chervin, J.C. Optical Properties of the Band-Edge Exciton in GaSe Crystals at 10 K. Phys. Rev. B 1980, 22, 6162–6170. [Google Scholar] [CrossRef]
- Capozzi, V. A Minafra Photoluminescence Properties of Cu-Doped GaSe. J. Phys. C Solid State Phys. 1981, 14, 4335. [Google Scholar] [CrossRef]
- Del Pozo-Zamudio, O.; Schwarz, S.; Sich, M.; Akimov, I.A.; Bayer, M.; Schofield, R.C.; Chekhovich, E.A.; Robinson, B.J.; Kay, N.D.; Kolosov, O.V.; et al. Photoluminescence of Two-Dimensional GaTe and GaSe Films. 2D Mater. 2015, 2, 35010. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, L.; Li, L.; Cheng, F.; Fu, X.; Li, J.; Pan, R.; Cao, W.; Chan, A.S.; Panin, G.N.; et al. GaSe Layered Nanorods Formed by Liquid Phase Exfoliation for Resistive Switching Memory Applications. J. Alloys Compd. 2020, 823, 153697. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Zhao, Q.; Yin, Z.; Zhang, Y.; Chen, B.; Xie, Y.; Jie, W. High-Quality GaSe Single Crystal Grown by the Bridgman Method. Materials 2018, 11, 186. [Google Scholar] [CrossRef]
- Lim, S.Y.; Lee, J.-U.; Kim, J.H.; Liang, L.; Kong, X.; Nguyen, T.T.H.; Lee, Z.; Cho, S.; Cheong, H. Polytypism in Few-Layer Gallium Selenide. Nanoscale 2020, 12, 8563–8573. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Lin, D.-Y.; Tseng, B.-C.; Kao, Y.-M.; Hwang, S.-B.; Lin, C.-F. Structural and Optical Characterization of GaS1-xSex Layered Mixed Crystals Grown by Chemical Vapor Transport. Mater. Today Commun. 2023, 37, 107047. [Google Scholar] [CrossRef]
- Bourdon, A.; Khelladi, F. Selection Rule in the Fundamental Direct Absorption of GaSe. Solid State Commun. 1971, 9, 1715–1717. [Google Scholar] [CrossRef]
- Capozzi, V. Direct and Indirect Excitonic Emission in GaSe. Phys. Rev. B 1981, 23, 836–840. [Google Scholar] [CrossRef]
- Zhang, D.; Jia, T.; Dong, R.; Chen, D. Temperature-Dependent Photoluminescence Emission from Unstrained and Strained GaSe Nanosheets. Materials 2017, 10, 1282. [Google Scholar] [CrossRef]
- Mercier, A.; Mooser, E.; Voitchovsky, J.P. Resonant Exciton in GaSe. Phys. Rev. B 1975, 12, 4307–4311. [Google Scholar] [CrossRef]
- Ishii, Y.; Sasaki, Y.; Hamaguchi, C.; Nakai, J. Transverse Electroreflectance of GaSe at the Fundamental Absorption Edge. Solid State Commun. 1975, 17, 451–454. [Google Scholar] [CrossRef]
- Matsumura, T.; Sudo, M.; Tatsuyama, C.; Ichimura, S. Photoluminescence in GaSe. Phys. Status Solidi 1977, 43, 685–693. [Google Scholar] [CrossRef]
- Yang, L.; Motohisa, J.; Fukui, T. Excitation-Power-Density-Dependent Micro-Photoluminescence from Selective-Area-Grown Hexagonal Nanopillars with Single InGaAs/GaAs Quantum Well on the GaAs (111)B Substrate. In Proceedings of the 2007 7th IEEE Conference on Nanotechnology (IEEE NANO), Hong Kong, China, 2–5 August 2007; pp. 664–669. [Google Scholar]
- Pan, C.-J.; Lin, K.-F.; Hsieh, W.-F. Acoustic and Optical Phonon Assisted Formation of Biexcitons. Appl. Phys. Lett. 2007, 91, 111907. [Google Scholar] [CrossRef]
- Feng, Z.C.; Li, Q.; Wan, L.; Xu, G. Variation of Phonon Coupling Factors in the Photoluminescence of Cadmium Telluride by Variable Excitation Power. Opt. Mater. Express 2017, 7, 808–816. [Google Scholar] [CrossRef]
Exciton States | (eV) | (meVK) | (meVK) | (meV) | |
---|---|---|---|---|---|
Absorption | 2.111 ± 0.002 | −0.5 ± 0.7 | 103 ± 10 | 18.6 ± 3.5 | |
2.128 ± 0.001 | −0.6 ± 0.5 | −111 ± 78 | 20.8 ± 7.8 | ||
PL | 2.111 ± 0.001 | −0.8 ± 0.4 | −121 ± 7 | 20.4 ± 2 | |
2.127 ± 0.001 | −1.1 ± 0.1 | −217 ± 40 | 29.2 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, L.V.; Huong, T.T.T.; Nguyen, T.-T.; Nguyen, X.A.; Nguyen, T.H.; Cho, S.; Kim, Y.D.; Kim, T.J. The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe. Crystals 2024, 14, 539. https://doi.org/10.3390/cryst14060539
Le LV, Huong TTT, Nguyen T-T, Nguyen XA, Nguyen TH, Cho S, Kim YD, Kim TJ. The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe. Crystals. 2024; 14(6):539. https://doi.org/10.3390/cryst14060539
Chicago/Turabian StyleLe, Long V., Tran Thi Thu Huong, Tien-Thanh Nguyen, Xuan Au Nguyen, Thi Huong Nguyen, Sunglae Cho, Young Dong Kim, and Tae Jung Kim. 2024. "The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe" Crystals 14, no. 6: 539. https://doi.org/10.3390/cryst14060539
APA StyleLe, L. V., Huong, T. T. T., Nguyen, T.-T., Nguyen, X. A., Nguyen, T. H., Cho, S., Kim, Y. D., & Kim, T. J. (2024). The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe. Crystals, 14(6), 539. https://doi.org/10.3390/cryst14060539