Neutron Macromolecular Crystallography for Biological Samples—Current State and Future Perspectives
Abstract
:1. Introduction
2. Biological Macromolecular Structure Determination
2.1. X-ray Macromolecular Crystallography
2.2. Electron Microscopy
2.3. Electron Diffraction
2.4. Neutron Macromolecular Crystallography
3. Hydrogen Determination in Biological Macromolecules
3.1. X-rays
3.2. Electrons
3.3. Neutrons
4. NMX: Practical Considerations for Biological Macromolecules
4.1. Sample Crystallization
4.2. Sample Deuteration
4.3. NMX, Radiation Damage, and Temperature Variation
5. Case Studies Involving the Application of NMX to Biological Macromolecule Targets
5.1. Neutron Structure of Urate Oxidate Resolves a Long-Standing Mechanistic Conundrum and Reveals Unexpected Changes in Protonation
5.2. Direct Observation of Protonation-State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography/Unusual Zwitterionic Catalytic Site of SARS-CoV-2 Main Protease Revealed by Neutron Crystallography
6. NMX for Biological Samples—Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks-Bartlett, J.C.; Garman, E.F. The Nobel Science: One Hundred Years of Crystallography. Interdiscip. Sci. Rev. 2015, 40, 244–264. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Kermani, A.A. A guide to membrane protein X-ray crystallography. FEBS J. 2021, 288, 5788–5804. [Google Scholar] [CrossRef]
- Holcomb, J.; Spellmon, N.; Zhang, Y.; Doughan, M.; Li, C.; Yang, Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS Biophys. 2017, 4, 557–575. [Google Scholar] [CrossRef] [PubMed]
- Nannenga, B.L.; Gonen, T. Protein structure determination by MicroED. Curr. Opin. Struct. Biol. 2014, 27, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Terwilliger, T.C.; Liebschner, D.; Croll, T.I.; Williams, C.J.; McCoy, A.J.; Poon, B.K.; Afonine, P.V.; Oeffner, R.D.; Richardson, J.S.; Read, R.J.; et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 2024, 21, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Cryst. 2019, D75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Kneller, D.W.; Phillips, G.; Weiss, K.L.; Pant, S.; Zhang, Q.; O’Neill, H.M.; Coates, L.; Kovalevsky, A. Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem. 2020, 295, 17365–17373. [Google Scholar] [CrossRef]
- O’Dell, W.B.; Bodenheimer, A.M.; Meilleur, F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch. Biochem. Biophys. 2016, 602, 48–60. [Google Scholar] [CrossRef]
- Wider, G. Structure Determination of Biological Macromolecules in Solution Using Nuclear Magnetic Resonance Spectroscopy. BioTechniques 2000, 29, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Wüthrich, K. NMR with Biological Macromolecules in Solution; World Scientific: Singapore, 2021. [Google Scholar]
- El Omari, K.; Duman, R.; Mykhaylyk, V.; Orr, C.M.; Latimer-Smith, M.; Winter, G.; Grama, V.; Qu, F.; Bountra, K.; Kwong, H.S.; et al. Experimental phasing opportunities for macromolecular crystallography at very long wavelengths. Commun. Chem. 2023, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Read, R. Protein Crystallography Course. 2005. Available online: https://www-structmed.cimr.cam.ac.uk/course.html (accessed on 11 October 2023).
- Nam, K.H. Serial X-ray Crystallography. Crystals 2022, 12, 99. [Google Scholar] [CrossRef]
- Skopintsev, P.; Ehrenberg, D.; Weinert, T.; James, D.; Kar, R.K.; Johnson, P.J.M.; Ozerov, D.; Furrer, A.; Martiel, I.; Dworkowski, F.; et al. Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 2020, 583, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Orville, A.M. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr. Opin. Struct. Biol. 2020, 65, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Svensson, O.; Malbet-Monaco, S.; Popov, A.; Nurizzo, D.; Bowler, M.W. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1757–1767. [Google Scholar] [CrossRef]
- Bezerra, G.A.; Ohara-Nemoto, Y.; Cornaciu, I.; Fedosyuk, S.; Hoffmann, G.; Round, A.; Márquez, J.A.; Nemoto, T.K.; Djinović-Carugo, K. Bacterial protease uses distinct thermodynamic signatures for substrate recognition. Sci. Rep. 2017, 7, 2848. [Google Scholar] [CrossRef] [PubMed]
- Zander, U.; Hoffmann, G.; Cornaciu, I.; Marquette, J.P.; Papp, G.; Landret, C.; Seroul, G.; Sinoir, J.; Röwer, M.; Felisaz, F.; et al. Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr. D Struct. Biol. 2016, 72, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Márquez, J.A.; Cipriani, F. CrystalDirect™: A novel approach for automated crystal harvesting based on photoablation of thin films. Methods Mol. Biol. 2014, 1091, 197–203. [Google Scholar]
- Junius, N.; Jaho, S.; Sallaz-Damaz, Y.; Borel, F.; Salmon, J.B.; Budayova-Spano, M. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. Lab Chip 2020, 20, 296–310. [Google Scholar] [CrossRef]
- Junius, N.; Oksanen, E.; Terrien, M.; Berzin, C.; Ferrer, J.L.; Budayova-Spano, M. A crystallization apparatus for temperature-controlled flow-cell dialysis with real-time visualization. J. Appl. Crystallogr. 2016, 49, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Rosier, D.D.J.; Klug, A. Reconstruction of Three Dimensional Structures from Electron Micrographs. Nature 1968, 217, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y. Single-particle cryo-EM—How did it get here and where will it go. Science 2018, 361, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.C. Seeing Atoms by Single-Particle Cryo-EM. Trends Biochem. Sci. 2021, 46, 253–254. [Google Scholar] [CrossRef]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.M.G.E.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-particle cryo-EM at atomic resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Yip, K.M.; Fischer, N.; Paknia, E.; Chari, A.; Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 2020, 587, 157–161. [Google Scholar] [CrossRef]
- Nannenga, B.L.; Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 2019, 16, 369–379. [Google Scholar] [CrossRef]
- Martynowycz, M.W.; Clabbers, M.T.B.; Unge, J.; Hattne, J.; Gonen, T. Benchmarking the ideal sample thickness in cryo-EM. Proc. Natl. Acad. Sci. USA 2021, 118, e2108884118. [Google Scholar] [CrossRef]
- Bentley, G.A.; Mason, S.A. Neutron diffraction studies of proteins. Philos. Trans. R. Soc. B Biol. 1980, 209, 505–510. [Google Scholar]
- LADI-III: Quasi-Laue Diffractometer LADI-III. Available online: https://www.ill.eu/users/instruments/instruments-list/ladi/description/instrument-layout (accessed on 13 October 2023).
- Helliwell, J.R. Chapter One—Fundamentals of neutron crystallography in structural biology. Meth. Enzymol. 2020, 634, 1–19. [Google Scholar]
- Tanaka, I.; Niimura, N. Design of a neutron diffractometer on biological marcomolecules. In 15th Meeting of the International Collaboration on Advanced Neutron Sources; Itoh, S., Susuki, J.J., Eds.; Japan Atomic Energy Research Institute: Tsukuba, Japan, 2000; pp. 488–491. [Google Scholar]
- Neutron Spectroscopy. Available online: https://www.ill.eu/neutrons-for-society/neutron-techniques/neutron-spectroscopy (accessed on 14 November 2023).
- Pelican—Time-of-Flight Spectrometer. Available online: https://www.ansto.gov.au/our-facilities/australian-centre-for-neutron-scattering/neutron-scattering-instruments/pelican-time (accessed on 14 November 2023).
- TOF-ND General Purpose Time-of-Flight Neutron Diffractometer. Available online: https://www.bnc.hu/?q=tof-nd (accessed on 14 November 2023).
- Sosnowska, I.M. The birth of time-of-flight (TOF) neutron powder diffraction at pulsed neutron source (invited). Cryst. Res. Technol. 2015, 50, 705–715. [Google Scholar] [CrossRef]
- Kono, F.; Kurihara, K.; Tamada, T. Current status of neutron crystallography in structural biology. Biophys. Physicobiol. 2022, 19, e190009. [Google Scholar] [CrossRef] [PubMed]
- de Broglie, L. Recherches sur la théorie des quanta. Ann. Phys. 1924, 10, 22–128. [Google Scholar] [CrossRef]
- List of Conversion Factors for Neutron Scattering. Available online: https://www.ncnr.nist.gov/instruments/dcs/dcs_usersguide/Conversion_Factors.pdf (accessed on 20 September 2023).
- Ohhara, T.; Kusaka, K.; Hosoya, T.; Kurihara, K.; Tomoyori, K.; Niimura, N.; Tanaka, I.; Suzuki, J.; Nakatani, T.; Otomo, T.; et al. Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 600, 195–197. [Google Scholar] [CrossRef]
- Arnold, O.; Bilheux, J.C.; Borreguero, J.M.; Buts, A.; Campbell, S.I.; Chapon, L.; Doucet, M.; Draper, N.; Ferraz Leal, R.; Gigg, M.A.; et al. Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 764, 156–166. [Google Scholar] [CrossRef]
- Afonine, P.V.; Grosse-Kunstleve, R.W.; Echols, N.; Headd, J.J.; Moriarty, N.W.; Mustyakimov, M.; Terwilliger, T.C.; Urzhumtsev, A.; Zwart, P.H.; Adams, P.D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Moriarty, N.W.; Poon, B.K.; Sobolev, O.V.; Terwilliger, T.C.; Adams, P.D. Polder maps: Improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 2017, 73, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Blakeley, M.P.; Hasnain, S.S.; Antonyuk, S.V. Sub-atomic resolution X-ray crystallography and neutron crystallography: Promise, challenges and potential. IUCrJ 2015, 2, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.F. Electron scattering from atomic hydrogen. III. Absolute differential cross sections for elastic scattering of electrons of energies from 20 to 680 eV. J. Phys. B Atom. Mol. Phys. 1975, 8, 2191–2199. [Google Scholar] [CrossRef]
- Carter, C.; March, N.H.; Vincent, D. X-ray and Electron Scattering by Molecular Hydrogen. Proc. Phys. Soc. 1958, 71, 2–16. [Google Scholar] [CrossRef]
- Maki-Yonekura, S.; Kawakami, K.; Takaba, K. Measurement of charges and chemical bonding in a cryo-EM structure. Commun. Chem. 2023, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Clabbers, M.T.B.; Martynowycz, M.W.; Hattne, J.; Gonen, T. Hydrogens and hydrogen-bond networks in macromolecular MicroED data. J. Struct. Biol. X 2022, 6, 100078. [Google Scholar] [CrossRef] [PubMed]
- Martynowycz, M.W.; Clabbers, M.T.B.; Hattne, J. Ab initio phasing macromolecular structures using electron-counted MicroED data. Nat. Methods 2022, 19, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Hattne, J.; Shi, D.; Glynn, C.; Zee, C.T.; Gallagher-Jones, M.; Martynowycz, M.W.; Rodriguez, J.A.; Gonen, T. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure 2018, 26, 759–766.e4. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.A.; Schneider, T.R.; Sieker, L.C.; Dauter, Z.; Lamzin, V.S.; Wilson, K.S. Refinement of triclinic hen egg-white lysozyme at atomic resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 1998, 54, 522–546. [Google Scholar] [CrossRef]
- Yamashita, K.; Palmer, C.M.; Burnley, T.; Murshudov, G.N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D Struct. Biol. 2021, 77, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Zaccai, N.R.; Coquelle, N. Opportunities and challenges in neutron crystallography. EPJ Web Conf. 2020, 236, 02001. [Google Scholar] [CrossRef]
- Chayen, N.E. Turning protein crystallisation from an art into a science. Curr. Opin. Struct. Biol. 2004, 14, 577–583. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A. Protein Crystallization. Methods Mol. Biol. 2017, 1607, 17–50. [Google Scholar]
- Fisher, S.J.; Blakeley, M.P.; Howard, E.I.; Petit-Haertlein, I.; Haertlein, M.; Mitschler, A.; Cousido-Siah, A.; Salvay, A.G.; Popov, A.; Muller-Dieckmann, C.; et al. Perdeuteration: Improved visualization of solvent structure in neutron macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 3266–3272. [Google Scholar] [CrossRef]
- Koruza, K.; Lafuma, B.; Végvari, A.; Knecht, W.; Fisher, S.Z. Deuteration of human carbonic anhydrase for neutron crystallography: Cell culture media, protein thermostability, and crystallization behavior. Arch. Biochem. Biophys. 2018, 645, 26–33. [Google Scholar] [CrossRef]
- Munshi, P.; Chung, S.-L.; Blakeley, M.P.; Weiss, K.L.; Myles, D.A.A.; Meilleur, F. Rapid visualization of hydrogen positions in protein neutron crystallographic structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, M.G.; Mason, S.A.; Blakeley, M.P.; Mitchell, E.P.; Haertlein, M.; Forsyth, V.T. Near-atomic resolution neutron crystallography on perdeuterated Pyrococcus furiosus rubredoxin: Implication of hydronium ions and protonation state equilibria in redox changes. Angew. Chem. Int. Ed. Engl. 2013, 52, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Howard, E.I.; Blakeley, M.P.; Haertlein, M.; Petit-Haertlein, I.; Mitschler, A.; Fisher, S.J.; Cousido-Siah, A.; Salvay, A.G.; Popov, A.; Muller-Dieckmann, C.; et al. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. J. Mol. Recognit. 2011, 24, 724–732. [Google Scholar] [CrossRef]
- Aggarwal, S.; von Wachenfeldt, C.; Fisher, S.Z.; Oksanen, E. A protocol for production of perdeuterated OmpF porin for neutron crystallography. Protein Expr. Purif. 2021, 188, 105954. [Google Scholar] [CrossRef] [PubMed]
- Meilleur, F.; Weiss, K.L.; Myles, D.A. Deuterium labeling for neutron structure-function-dynamics analysis. Methods Mol. Biol. 2009, 544, 281–292. [Google Scholar] [PubMed]
- Garman, E.F. Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Leapman, R.D.; Sun, S. Cryo-electron energy loss spectroscopy: Observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 1995, 59, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Schroder, G.C.; Meilleur, F. Metalloprotein catalysis: Structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Cryst. 2021, D77, 1251–1269. [Google Scholar] [CrossRef]
- Fraser, J.S.; van den Bedem, H.; Samelson, A.J.; Lang, P.T.; Holton, J.M.; Echols, N.; Alber, T. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl. Acad. Sci. USA 2011, 108, 16247–16252. [Google Scholar] [CrossRef]
- Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020, 11, 3202. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, D.W. Cryocrystallography. Structure 1994, 2, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Schröder, G.C.; O’Dell, W.B.; Myles, D.A.A.; Kovalevsky, A.; Meilleur, F. Imagine: Neutrons reveal enzyme chemistry. Acta Cryst. 2018, D74, 778–786. [Google Scholar] [CrossRef]
- Myles, D.A.A.; Dauvergne, F.; Blakeley, M.P.; Meilleur, F. Neutron protein crystallography at ultra-low (<15 K) temperatures. J. Appl. Cryst. 2012, 45, 686–692. [Google Scholar]
- Kwon, H.; Langan, P.S.; Coates, L.; Raven, E.L.; Moody, P.C.E. The rise of neutron cryo-crystallography. Acta Cryst. 2018, D74, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 1968, 33, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.W. X-ray crystallographic studies of proteins. Annu. Rev. Phys. Chem. 1976, 27, 493–523. [Google Scholar] [CrossRef]
- Teng, T.-Y.; Moffat, K. Cooling Rates During Flash Cooling. J. Appl. Cryst. 1998, 31, 252–257. [Google Scholar] [CrossRef]
- Casadei, C.M.; Gumiero, A.; Metcalfe, C.L.; Murphy, E.J.; Basran, J.; Consilio, M.G.; Teixeira, S.C.M.; Schrader, T.E.; Fielding, A.J.; Ostermann, A.; et al. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase. Science 2014, 345, 193–197. [Google Scholar] [CrossRef]
- Kwon, H.; Basran, J.; Casadei, C.M.; Fielding, A.J.; Schrader, T.E.; Ostermann, A.; Devos, J.M.; Aller, P.; Blakeley, M.P.; Moody, P.C.E.; et al. Direct visualization of a Fe(IV)-OH intermediate in a heme enzyme. Nature Commun. 2016, 7, 13445. [Google Scholar] [CrossRef]
- O’Dell, W.B.; Agarwal, P.K.; Meilleur, F. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase. Angew. Chem. Int. Ed. 2017, 56, 767–770. [Google Scholar] [CrossRef]
- Kahn, K.; Serfozo, P.; Tipton, P.A. Identification of the True Product of the Urate Oxidase Reaction. J. Am. Chem. Soc. 1997, 119, 5435–5442. [Google Scholar] [CrossRef]
- Sarma, A.D.; Serfozo, P.; Kahn, K.; Tipton, P.A. Identification and purification of hydroxyisourate hydrolase, a novel ureide-metabolizing enzyme. J. Biol. Chem. 1999, 274, 33863–33865. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.W.; Lee, C.C.; Muzny, D.M.; Caskey, C.T. Urate oxidase: Primary structure and evolutionary implications. Proc. Natl. Acad. Sci. USA 1989, 86, 9412–9416. [Google Scholar] [CrossRef] [PubMed]
- Giffard, M.; Ferté, N.; Ragot, F.; El-Hajji, M.; Castro, B.; Bonneté, F. Urate oxidase purification by salting-in crystallization: Towards an alternative to chromatography. PLoS ONE 2011, 6, e19013. [Google Scholar] [CrossRef]
- Colloc’h, N.; El-Hajji, M.; Bachet, B.; L’Hermite, G.; Schiltz, M.; Castro, B.; Mornon, J.P. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 A resolution. Nat. Struct. Biol. 1997, 4, 947–952. [Google Scholar] [CrossRef]
- Gabison, L.; Chiadmi, M.; Colloc’h, N.; Castro, B.; El-Hajji, M.; Prangé, T. Recapture of [S]-allantoin, the product of the two-step degradation of uric acid, by urate oxidase. FEBS Lett. 2006, 580, 2087–2091. [Google Scholar] [CrossRef]
- Gabison, L.; Prangé, T.; Colloc’h, N.; El-Hajji, M.; Castro, B.; Chiadmi, M. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: Mechanistic implications. BMC Struct. Biol. 2008, 8, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Retailleau, P.; Colloc’h, N.; Vivarès, D.; Bonneté, F.; Castro, B.; El-Hajji, M.; Prangé, T. Urate oxidase from Aspergillus flavus: New crystal-packing contacts in relation to the content of the active site. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 218–229. [Google Scholar] [CrossRef]
- Retailleau, P.; Colloc’h, N.; Vivarès, D.; Bonneté, F.; Castro, B.; El-Hajji, M.; Mornon, J.P.; Monard, G.; Prangé, T. Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: A reassignment of the active-site binding mode. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 453–462. [Google Scholar] [CrossRef]
- Oksanen, E.; Blakeley, M.P.; Bonneté, F.; Dauvergne, M.T.; Dauvergne, F.; Budayova-Spano, M. Large crystal growth by thermal control allows combined X-ray and neutron crystallographic studies to elucidate the protonation states in Aspergillus flavus urate oxidase. J. R. Soc. Interface 2009, 6, S599–S610. [Google Scholar] [CrossRef]
- Oksanen, E.; Blakeley, M.P.; El-Hajji, M.; Ryde, U.; Budayova-Spano, M. The neutron structure of urate oxidase resolves a long-standing mechanistic conundrum and reveals unexpected changes in protonation. PLoS ONE 2014, 9, e86651. [Google Scholar] [CrossRef]
- Budayova-Spano, M.; Dauvergne, F.; Audiffren, M.; Bactivelane, T.; Cusack, S. A methodology and an instrument for the temperature-controlled optimization of crystal growth. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Budayova-Spano, M.; Bonneté, F.; Ferté, N.; El-Hajji, M.; Meilleur, F.; Blakeley, M.P.; Castro, B. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 306–309. [Google Scholar] [CrossRef]
- Hattori, A.; Crespi, H.L.; Katz, J.J. Effect of side-chain deuteration on protein stability. Biochemistry 1965, 4, 1213–1225. [Google Scholar] [CrossRef]
- Liu, X.; Hanson, B.L.; Langan, P.; Viola, R.E. The effect of deuteration on protein structure: A high-resolution comparison of hydrogenous and perdeuterated haloalkane dehalogenase. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63, 1000–1008. [Google Scholar] [CrossRef]
- Afonine, P.V.; Mustyakimov, M.; Grosse-Kunstleve, R.W.; Moriarty, N.W.; Langan, P.; Adams, P.D. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Altarsha, M. Modélisation du mécanisme catalytique de l’urate oxydase, in Chimie Informatique et Theorique. Ph.D. Thesis, Université Henri Poincaré—Nancy 1, Nancy, France, 2005. [Google Scholar]
- McGregor, L.; Földes, T.; Bui, S.; Moulin, M.; Coquelle, N.; Blakeley, M.P.; Rosta, E.; Steiner, R.A. Joint neutron/X-ray crystal structure of a mechanistically relevant complex of perdeuterated urate oxidase and simulations provide insight into the hydration step of catalysis. IUCrJ 2021, 8, 46–59. [Google Scholar] [CrossRef]
- Kneller, D.W.; Phillips, G.; Weiss, K.L.; Zhang, Q.; Coates, L.; Kovalevsly, A. Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. J. Med. Chem. 2021, 64, 4991–5000. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, B.; Jiang, X.-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368, 1331–1335. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, A.; Lynch, D.L.; Daidone, I.; Zanetti-Polzi, L.; Smith, M.D.; Chipot, C.; Kneller, D.W.; Kovalevsky, A.; Coates, L.; Golosov, A.A.; et al. Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Chem. Sci. 2020, 12, 1513–1527. [Google Scholar] [CrossRef] [PubMed]
- Luft, J.R.; Collins, R.J.; Fehrman, N.A.; Lauricella, A.M.; Veatch, C.K.; DeTitta, G.T. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 2003, 142, 170–179. [Google Scholar] [CrossRef]
- European Spallation Source. Available online: https://europeanspallationsource.se (accessed on 20 October 2023).
- Markó, M.; Nagy, G.; Aprigliano, G.; Oksanen, E. Neutron macromolecular crystallography at the European spallation source. Meth. Enzymol. 2020, 634, 125–151. [Google Scholar]
Facility | Instrument | Neutron Source Type | Diffraction Method |
---|---|---|---|
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II; Garching, Germany) | Diffractometer for Large Unit Cells (BIODIFF) | Reactor | Monochromatic |
Japan Research Reactor (JRR-3; Tokai, Japan) | Diffractometer for Biological Crystallography (BIX3, BIX4) | Reactor | Monochromatic |
ILL | LADI-III | Reactor | Quasi Laue |
High Flux Isotope Reactor (HIFR; Oak Ridge, TN, USA) | Laue Diffractometer (IMAGINE) | Reactor | Quasi Laue |
Materials and Life Science Experimental Facility/Japan Proton Accelerator Research Com-plex (MLF/J-PARC; Tokai, Japan) | IBARAKI Biological Crystal Diffractometer (iBIX) | Spallation | Time-of-flight |
Spallation Neutron Source (SNS; Oak Ridge, TN, USA) | Macromolecular Neutron Diffractometer (MaNDi) | Spallation | Time-of-flight |
Isotope | Atomic Number | Neutron Coherent Scattering Length (10−12 cm) | Neutron Incoherent Cross-Section (Barn = 10−28 m2) |
---|---|---|---|
1H | 1 | −0.374 | 80.27 |
2H (D) | 1 | 0.667 | 2.05 |
12C | 6 | 0.665 | 0.00 |
14N | 7 | 0.937 | 0.50 |
16O | 8 | 0.580 | 0.00 |
31P | 15 | 0.513 | 0.01 |
32S | 16 | 0.280 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hjorth-Jensen, S.J.; Budayova-Spano, M. Neutron Macromolecular Crystallography for Biological Samples—Current State and Future Perspectives. Crystals 2024, 14, 433. https://doi.org/10.3390/cryst14050433
Hjorth-Jensen SJ, Budayova-Spano M. Neutron Macromolecular Crystallography for Biological Samples—Current State and Future Perspectives. Crystals. 2024; 14(5):433. https://doi.org/10.3390/cryst14050433
Chicago/Turabian StyleHjorth-Jensen, Samuel John, and Monika Budayova-Spano. 2024. "Neutron Macromolecular Crystallography for Biological Samples—Current State and Future Perspectives" Crystals 14, no. 5: 433. https://doi.org/10.3390/cryst14050433
APA StyleHjorth-Jensen, S. J., & Budayova-Spano, M. (2024). Neutron Macromolecular Crystallography for Biological Samples—Current State and Future Perspectives. Crystals, 14(5), 433. https://doi.org/10.3390/cryst14050433