Recent Developments in Multifunctional Coordination Polymers
Conflicts of Interest
References
- Dragutan, I.; Ding, F.; Sun, Y.-G.; Dragutan, V. (Academic Eds.). Crystals 2023, 13. Available online: https://www.mdpi.com/journal/crystals/special_issues/Multifunct_Coord_Polym (accessed on 1 January 2022).
- You, L.-X.; Ren, B.-Y.; He, Y.-K.; Wang, S.-J.; Sun, Y.-G.; Dragutan, V.; Xiong, G.; Ding, F. Structural features of lanthanide coordination polymers with catalytic properties. J. Mol. Struct. 2024, 1304, 137687. [Google Scholar] [CrossRef]
- Huo, J. Advanced coordination polymer materials for drug delivery systems. Appl. Comput. Eng. 2023, 7, 202–207. [Google Scholar] [CrossRef]
- Saraci, F.; Quezada-Novoa, V.; Rafael Donnarumma, P.; Howarth, A.J. Rare-earth metal–organic frameworks: From structure to applications. Chem. Soc. Rev. 2020, 49, 7949–7977. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X.-H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558–586. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, J.; Fang, Z.; Huang, S.; Chen, Z.; Qiu, F.; Lu, C.; Zhu, J.; Zhuang, X. One-dimensional coordination polymers based on metal–nitrogen linkages. Coord. Chem. Rev. 2022, 471, 214735. [Google Scholar] [CrossRef]
- Engel, E.R.; Scott, J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020, 22, 3693–3715. [Google Scholar] [CrossRef]
- Cheng, H.; Song, F.-Q.; Zhao, N.-N.; Song, X.-Q. A hydrostable Zn2+ coordination polymer for multifunctional detection of inorganic and organic contaminants in water. Dalton Trans. 2021, 50, 16110–16121. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-D.; Li, J.-L.; Guo, X.-Z.; Zhang, Z.-Y.; Chen, S.-S. Metal(II) Coordination Polymers Derived from Mixed 4-Imidazole Ligands and Carboxylates: Syntheses, Topological Structures, and Properties. Polymers 2018, 10, 622. [Google Scholar] [CrossRef]
- Demuth, M.C.; Le, K.N.; Sciprint, M.; Hendon, C.H. Ligand-Engineered Spin Crossover in Fe(II)-Based Molecular and Metal–Organic Framework Systems. J. Phys. Chem. C 2023, 127, 2735–2740. [Google Scholar] [CrossRef]
- Ye, S.-Y.; Wu, J.-Q.; Yu, B.-B.; Hua, Y.-W.; Han, Z.; He, Z.-Y.; Yan, Z.; Li, M.-L.; Meng, Y.; Cao, X. Highly Stable Two-Dimensional Cluster-Based Ni/Co–Organic Layers for High-Performance Supercapacitors. Inorg. Chem. 2022, 61, 18743–18751. [Google Scholar] [CrossRef] [PubMed]
- Fytory, M.; Mansour, A.; El Rouby, W.M.A.; Farghali, A.A.; Zhang, X.; Bier, F.; Abdel-Hafiez, M.; El-Sherbiny, I.M. Core–Shell Nanostructured Drug Delivery Platform Based on Biocompatible Metal–Organic Framework-Ligated Polyethyleneimine for Targeted Hepatocellular Carcinoma Therapy. ACS Omega 2023, 8, 20779–20791. [Google Scholar] [CrossRef] [PubMed]
- Foziya Yusuf, V.; Malek, N.; Kumar Kailasa, S. Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507–44531. [Google Scholar] [CrossRef] [PubMed]
- Bieniek, A.; Terzyk, A.P.; Wisniewski, M.; Roszek, K.; Kowalczyk, P.; Sarkisov, L.; Keskin, S.; Kaneko, K. MOFs as therap agents, drug carriers, imaging, biosensors in cancer. Prog. Mater. Sci. 2021, 117, 100743. [Google Scholar] [CrossRef]
- Ou, Y.-C.; Zhong, R.-M.; Wu, J.-Z. Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Trans. 2022, 51, 2992–3003. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, L.; Dou, J.-H.; Li, J.; Skorupskii, G.; Mardini, M.; Tan, K.O.; Chen, T.; Sun, C.; Oppenheim, J.J.; et al. Room-Temperature Quantitative Quantum Sensing of Lithium Ions with a Radical-Embedded Metal–Organic Framework. J. Am. Chem. Soc. 2022, 144, 19008–19016. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-N.; Zhao, S.-J.; Leng, W.-X.; Zhang, X.; Liu, D.-Y.; Zhang, J.-H.; Sun, Z.-G.; Zhu, Y.-Y.; Zheng, H.-W.; Jiao, C.-Q. Dual-Functional Eu-Metal-Organic Framework with Ratiometric Fluorescent Broad-Spectrum Sensing of Benzophenone-like Ultraviolet Filters and High Proton Conduction. Inorg. Chem. 2023, 62, 12730–12740. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-X.; Wang, Y.; Almalki, M.; Yin, J.; Shekhah, O.; Jia, J.; Gutiérrez-Arzaluz, L.; Cheng, Y.; Alkhazragi, O.; Maka, V.K.; et al. Engineering Metal-Organic Frameworks with Tunable Colors for High-Performance Wireless Communication. J. Am. Chem. Soc. 2023, 145, 15435–15442. [Google Scholar] [CrossRef]
- You, L.-X.; Zhang, L.; Cao, S.-Y.; Liu, W.; Xiong, G.; Van Deun, R.; He, Y.K.; Ding, F.; Dragutan, V.; Sun, Y.-G. Synthesis, structure and luminescence of 3D lanthanide metal–organic frameworks based on 1,3-bis(3,5-dicarboxyphenyl) imidazolium chloride. Inorg. Chim. Acta 2022, 543, 121181. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Yang, X.; Kou, Y.; Chen, W.; Liu, W. Construction of a series of Ln-MOF luminescent sensors based on a functional “V” shaped ligand. Dalton Trans. 2022, 51, 12549–12557. [Google Scholar] [CrossRef]
- You, L.-X.; Cao, S.-Y.; Guo, Y.; Wang, S.-J.; Xiong, G.; Dragutan, I.; Dragutan, V.; Ding, F.; Sun, Y.-G. Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N’-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorg. Chim. Acta 2021, 525, 120441. [Google Scholar] [CrossRef]
- Decadt, R.; Van Hecke, K.; Depla, D.; Leus, K.; Weinberger, D.; Van Driessche, I.; Van Der Voort, P.; Van Deun, R. Synthesis, Crystal Structures, and Luminescence Properties of Carboxylate Based Rare-Earth Coordination Polymers. Inorg. Chem. 2012, 51, 11623–11634. [Google Scholar] [CrossRef]
- Chen, W.; Shi, W.; Li, W.; Nguyen, W.; Wang, J.-H.; Chen, M. Advances of Metal Organic Frameworks in Analytical and Biological Applications. SSRN Electron. J. 2022, 434, 1–71; [Google Scholar] [CrossRef]
- Wang, S.-J.; Li, Q.; Xiu, G.-L.; You, L.-X.; Ding, F.; Van Deun, R.; Dragutan, I.; Dragutan, V.; Sun, Y.-G. New Ln-MOFs based on mixed organic ligands: Synthesis, structure and efficient luminescence sensing of the Hg2+ ion in aqueous solutions. Dalton Trans. 2021, 50, 15612–15619. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Kitagawa, Y. Luminescent lanthanide coordination polymers with transformative energy transfer processes for physical and chemical sensing applications. J. Photochem. Photobiol. C Photochem. Rev. 2022, 5, 100485. [Google Scholar] [CrossRef]
- Nangare, S.N.; Patil, A.G.; Chandankar, S.M.; Patil, P.O. Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: Current challenges and future prospects. J. Nanostruct. Chem. 2023, 13, 197–242. [Google Scholar] [CrossRef]
- Sahoo, S.; Mondal, S.; Sarma, D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord. Chem. Rev. 2022, 470, 214707. [Google Scholar] [CrossRef]
- Liu, W.; Chen, C.; Wu, Z.; Pan, Y.; Ye, C.; Mu, Z.; Luo, X.; Chen, W.; Liu, W. Construction of Multifunctional Luminescent Lanthanide MOFs by Hydrogen Bond Functionalization for Picric Acid Detection and Fluorescent Dyes Encapsulation. ACS Sustain. Chem. Eng. 2020, 8, 13497–13506. [Google Scholar] [CrossRef]
- Deng, M.; Sun, J.; Chakraborty, J.; Maofan, Z.; Van Der Voort, P. From Design to Applications: A Comprehensive Review on Porous Frameworks for Photocatalytic Volatile Organic Compounds (VOCs) Removal. ChemCatChem 2024, e202300783. [Google Scholar] [CrossRef]
- Hu, M.; Shu, Y.; Kirillov, A.; Liu, W.; Yang, L.; Dou, W. Epoxy Functional Composites Based on Lanthanide Metal-Organic Frameworks for Luminescent Polymer Materials. ACS Appl. Mater. Interfaces 2021, 13, 7625–7634. [Google Scholar] [CrossRef]
- Saqaf Jagirani, M.; Zhou, W.; Nazir, A.; Yasir Akram, M.; Huo, P.; Yan, Y.A. Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit. Rev. Anal. Chem. 2024, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Wiwasuku, T.; Chuaephon, A.; Habarakada, U.; Boonmak, J.; Puangmali, T.; Kielar, F.; Harding, D.J.; Youngme, S. A Water-Stable Lanthanide-Based MOF as a Highly Sensitive Sensor for the Selective Detection of Paraquat in Agricultural Products. ACS Sustain. Chem. Eng. 2022, 10, 2761–2771. [Google Scholar] [CrossRef]
- Wang, K.; Duan, Y.; Chen, J.; Wang, H.; Liu, H. A dye encapsulated zinc-based metal–organic framework as a dual-emission sensor for highly sensitive detection of antibiotics. Dalton Trans. 2022, 51, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Vázquez, L.D.; Valdes-García, J.; Germán-Acacio, J.M.; Páez-Franco, J.C.; Martínez-Otero, D.; Vilchis-Nestor, A.R.; Joaquín Barroso-Flores, J.; Víctor Sánchez-Mendieta, V.; Dorazco-González, A. A water-stable luminescent Zn-MOF based on a conjugated π-electron ligand as an efficient sensor for atorvastatin and its application in pharmaceutical samples. J. Mater. Chem. C 2022, 10, 5944–5955. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed. 2021, 60, 5010–5035. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Shahnawaz Khan, M.; Liu, J.; Peng, Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 2022, 51, 14817–14832. [Google Scholar] [CrossRef]
- Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials 2022, 12, 277. [Google Scholar] [CrossRef]
- Jakubowski, M.; Domke, A.; Voelkel, A.; Sandomierski, M. Biomedical Applications of Titanium Alloys Modified with MOFs—Current Knowledge and Further Development Directions. Crystals 2023, 13, 257. [Google Scholar] [CrossRef]
- Kang, C.H.; Wang, Y.; Alkhazragi, O.; Lu, H.; Ng, T.K.; Ooi, B.S. Down-converting luminescent optoelectronics and their applications. APL Photonics 2023, 8, 020903. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Luo, Z.-D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Zhao, S.-N.; Wang, G.; Poelman, D.; Van Der Voort, P. Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials 2018, 11, 572. [Google Scholar] [CrossRef]
- Cammiade, A.E.I.; Straub, L.; Van Gerven, D.; Wickleder, M.S.; Ruschewitz, U. Synthesis, Structure, and Spectroscopic Properties of Luminescent Coordination Polymers Based on the 2,5-Dimethoxyterephthalate Linker. Chemistry 2023, 5, 965–977. [Google Scholar] [CrossRef]
- Topor, A.; Avram, D.; Dascalu, R.; Maxim, C.; Tiseanu, C.; Andruh, M. Luminescence thermometry based on one-dimensional benzoato-bridged coordination polymers containing lanthanide ions. Dalton Trans. 2021, 50, 9881–9890. [Google Scholar] [CrossRef]
- Dragancea, D.; Novitchi, G.; Madalan, A.M.; Andruh, M. New Cyanido-Bridged Heterometallic 3d-4f 1D Coordination Polymers: Synthesis, Crystal Structures and Magnetic Properties. Magnetochemistry 2021, 7, 57. [Google Scholar] [CrossRef]
- Vaz, M.G.F.; Andruh, M. Molecule-based magnetic materials constructed from paramagnetic organic ligands and two different metal ions. Coord. Chem. Rev. 2021, 427, 213611. [Google Scholar] [CrossRef]
- Somnath, W.; Arif, A.; Musheer, A.; Kafeel, A.S. Bifunctional Self-Penetrating Co(II)-Based 3D MOF for High-Performance Environmental and Energy Storage Applications. Cryst. Growth Des. 2022, 22, 7374–7394. [Google Scholar] [CrossRef]
- Ahmed, S.; Kumar, A.; Sarathi Mukherjee, P. Tetraphenylethene-Based Emissive Pt(II) Coordination Polymer toward Artificial Light-Harvesting Systems with Sequential Energy Transfer. Chem. Mater. 2022, 21, 9656–9665. [Google Scholar] [CrossRef]
- Kamakura, Y.; Tanaka, D. Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. Chem. Lett. 2021, 50, 523–533. [Google Scholar] [CrossRef]
- Fang, R.; Dhakshinamoorthy, A.; Li, Y.; Garcia, H. Metal organic frameworks for biomass conversion. Chem. Soc. Rev. 2020, 49, 3638–3687. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, M.-L.; Zhang, Y.; Liu, L.; Han, Z.-B. Trifunctional Metal–Organic Framework Catalyst for CO2 Conversion into Cyclic Carbonates. Inorg. Chem. 2021, 60, 6152–6156. [Google Scholar] [CrossRef]
- Sekhar Jena, H.; Kaczmarek, A.M.; Krishnaraj, C.; Feng, X.; Vijayvergia, K.; Yildirim, H.; Zhao, S.-N.; Van Deun, R.; Van Der Voort, P. White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu3+ and Tb3+. Cryst. Growth Des. 2019, 19, 6339–6350. [Google Scholar] [CrossRef]
- Dragutan, V.; Dragutan, I.; Xiong, G.; You, L.-X.; Sun, Y.-G.; Ding, F. Recent developments on carbon-carbon cross-coupling reactions using rare-earth metals-derived coordination polymers as efficient and selective Pd catalytic systems. Resour. Chem. Mater. 2022, 1, 325–338. [Google Scholar] [CrossRef]
- Runowski, M.; Marcinkowski, D.; Soler-Carracedo, K.; Gorczyński, A.; Ewert, E.; Woźny, P.; Martín, I.R. Noncentrosymmetric Lanthanide-Based MOF Materials Exhibiting Strong SHG Activity and NIR Luminescence of Er3+: Application in Nonlinear Optical Thermometry. ACS Appl. Mater. Interfaces 2023, 15, 3244–3252. [Google Scholar] [CrossRef]
- Wu, W.; Xie, Y.; Lv, X.-L.; Xie, L.-H.; Zhang, X.; He, T.; Si, G.-R.; Wang, K.; Li, J.-R. Expanding the Structural Topologies of Rare-Earth Porphyrinic Metal–Organic Frameworks through Ligand Modulation. ACS Appl. Mater. Interfaces 2023, 15, 5357–5364. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Zheng, J.; Chen, X.; Shan, L.; Gao, L.; Wang, L.; Yu, M.; Fan, Y. Lanthanide coordination polymer constructed from 2,2′-bipyridyl-4,4′-dicarboxylic acid: Structure, catalysis and fluorescence. Inorg. Chim. Acta 2015, 437, 81–86. [Google Scholar] [CrossRef]
- You, L.-X.; Zong, W.; Xiong, G.; Ding, F.; Wang, S.; Ren, B.; Dragutan, I.; Dragutan, V.; Sun, Y. Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Appl. Catal. A Gen. 2016, 511, 1–10. [Google Scholar] [CrossRef]
- You, L.-X.; Zhu, W.; Wang, S.; Xiong, G.; Ding, F.; Ren, B.; Dragutan, I.; Dragutan, V.; Sun, Y.-G. High Catalytic Activity in Aqueous Heck and Suzuki-Miyaura Reactions Catalyzed by Novel Pd/Ln Coordination Polymers Based on 2,2′-Bipyridine-4,4′-dicarboxylic Acid as a Heteroleptic Ligand. Polyhedron 2016, 115, 47–53. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Wang, L.; Ma, J.; Yang, L.; Pan, F.-X.; Kirillov, A.M.; Liu, W. New lanthanide(iii) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixation. Dalton Trans. 2017, 46, 16426–16431. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-L.; Jia, A.-Q.; Jin, G.-X. Pd(diimine)Cl2 embedded heterometallic compounds with porous structures as efficient heterogeneous catalysts. Chem. Commun. 2013, 49, 2403–2405. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, L.; Wei, N.; Gao, M.-L.; Zhao, D.; Han, Z.-B. Robust Bifunctional Lanthanide Cluster Based Metal−Organic Frameworks (MOFs) for Tandem Deacetalization−Knoevenagel Reaction. Inorg. Chem. 2018, 57, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, F.; Fan, L.L.; Zhao, W.; Chen, B.; Chen, X.; Zhou, S.; Xiao, J.; Zhang, G. Improved hydrolytic robustness and catalytic performance of flexible lanthanide-based metal-organic frameworks: A matter of coordination environments. Mater. Des. 2020, 194, 108881. [Google Scholar] [CrossRef]
- You, L.-X.; Cui, L.; Zhao, B.; Xiong, G.; Ding, F.; Ren, B.; Shi, Z.; Dragutan, I.; Dragutan, V.; Sun, Y.-G. Tailoring the structure, pH sensitivity and catalytic performance in Suzuki-Miyauracross-couplings of Ln/Pd MOFs based on the 1,1′-di(p-carboxybenzyl)-2,2′-diimidazole linker. Dalton Trans. 2018, 47, 8755–8763. [Google Scholar] [CrossRef] [PubMed]
- You, L.-X.; Xie, S.-Y.; Xia, C.-C.; Wang, S.-J.; Xiong, G.; He, Y.-K.; Dragutan, I.; Dragutan, V.; Fedin, V.P.; Sun, Y.-G. Unprecedented homochiral 3D lanthanide coordination polymers with triple-stranded helical architecture constructed from a rigid achiral aryldicarboxylate ligand. CrystEngComm 2019, 21, 1758–1763. [Google Scholar] [CrossRef]
- Sinchow, M.; Semakul, N.; Konno, T.; Rujiwatra, A. Lanthanide Coordination Polymers through Design for Exceptional Catalytic Performances in CO2 Cycloaddition Reactions. ACS Sustain. Chem. Eng. 2021, 9, 8581–8591. [Google Scholar] [CrossRef]
- Mendes, R.F.; Figueira, F.; Leite, J.P.; Gales, L.; Almeida Paz, F.A. Metal–Organic frameworks: A future toolbox for biomedicine? Chem. Soc. Rev. 2020, 49, 9121–9153. [Google Scholar] [CrossRef] [PubMed]
- Łyszczek, R.; Rusinek, I.; Ostasz, A.; Sienkiewicz-Gromiuk, S.; Vlasyuk, D.; Groszek, M.; Lipke, A.; Pavlyuk, O. New Coordination Polymers of Selected Lanthanides with 1,2-Phenylenediacetate Linker: Structures, Thermal and Luminescence Properties. Materials 2021, 14, 4871. [Google Scholar] [CrossRef]
- Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770–784. [Google Scholar] [CrossRef]
- Biradha, K.; Das, S.K.; Bu, X.-H. Coordination Polymers as Heterogeneous Catalysts for Water Splitting and CO2 Fixation. Cryst. Growth Des. 2022, 22, 2043–2045. [Google Scholar] [CrossRef]
- Sonowal, K.; Saikia, L. Metal–Organic frameworks and their composites for fuel and chemical production via CO2 conversion and water splitting. RSC Adv. 2022, 12, 11686–11707. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Kou, Y.; Yang, X.; Ju, Z.; Liu, W. Multifunctional lanthanide MOF luminescent sensor built by structural designing and energy level regulation of a ligand. Inorg. Chem. Front. 2022, 9, 4065–4074. [Google Scholar] [CrossRef]
- Ivanova, E.A.; Smirnova, K.S.; Pozdnyakov, I.P.; Potapov, A.S.; Lider, E.V. Photoluminescent Lanthanide(III) Coordination Polymers with Bis(1,2,4-Triazol-1-yl)Methane Linker. Inorganics 2023, 11, 317. [Google Scholar] [CrossRef]
- Fan, K.; Li, J.; Xu, Y.; Fu, C.; Chen, Y.; Zhang, C.; Zhang, G.; Ma, J.; Zhai, T.; Wang, C. Single Crystals of a Highly Conductive Three-Dimensional Conjugated Coordination Polymer. J. Am. Chem. Soc. 2023, 145, 12682–12690. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Richardson, J.J.; Zhou, J.; Caruso, F. Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat. Rev. Chem. 2023, 7, 273–286. [Google Scholar] [CrossRef]
- Yan, T.; Huo, Y.; Pan, W.-G. Optimization Strategies of the Design and Preparation of Metal–Organic Framework Nanostructures for Water Sorption: A Review. ACS Appl. Nano Mater. 2023, 6, 10903–10924. [Google Scholar] [CrossRef]
- Shao, D.; Shi, L.; Liu, G.; Yue, J.; Ming, S.; Yang, X.; Zhu, J.; Ruan, Z. Metalo Hydrogen-Bonded Organic Frameworks Self-Assembled by Charge-Assisted Synthons for Ultrahigh Proton Conduction. Cryst. Growth Des. 2023, 23, 5035–5042. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Wang, X.; Wang, X.; Luo, Y.; Tan, C.; Jiang, L.; Wang, Y.; Liu, W. Fabrication of a Large-Area Flexible Scintillating Membrane for High-Resolution X-ray Imaging Using an AIEgen-Functionalized Metal–Organic Framework. Inorg. Chem. 2023, 62, 6421–6427. [Google Scholar] [CrossRef]
- Murty, R.; Bera, M.K.; Walton, I.M.; Whetzel, C.; Prausnitz, M.R.; Walton, K.S. Interrogating Encapsulated Protein Structure within Metal–Organic Frameworks at Elevated Temperature. J. Am. Chem. Soc. 2023, 145, 7323–7330. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Li, J.-J.; Wang, Y.-H.; Gao, F.-H.; Su, J.-L.; Liu, Y.; Wang, H.-S.; Ding, Y. Metal/covalent-organic framework-based biosensors for nucleic acid detection. Coord. Chem. Rev. 2023, 491, 215249. [Google Scholar] [CrossRef]
- Wang, K.-Y.; Zhang, J.; Hsu, Y.-C.; Lin, H.; Han, Z.; Pang, J.; Yang, Z.; Liang, R.-R.; Shi, W.; Zhou, H.-C. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem. Rev. 2023, 123, 5347–5420. [Google Scholar] [CrossRef]
- Shi, W.; Li, W.; Nguyen, W.; Chen, W.; Wang, J.; Chen, M. Advances of metal organic frameworks in analytical applications. Mater. Today Adv. 2022, 15, 100273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragutan, I.; Ding, F.; Sun, Y.; Dragutan, V. Recent Developments in Multifunctional Coordination Polymers. Crystals 2024, 14, 301. https://doi.org/10.3390/cryst14040301
Dragutan I, Ding F, Sun Y, Dragutan V. Recent Developments in Multifunctional Coordination Polymers. Crystals. 2024; 14(4):301. https://doi.org/10.3390/cryst14040301
Chicago/Turabian StyleDragutan, Ileana, Fu Ding, Yaguang Sun, and Valerian Dragutan. 2024. "Recent Developments in Multifunctional Coordination Polymers" Crystals 14, no. 4: 301. https://doi.org/10.3390/cryst14040301
APA StyleDragutan, I., Ding, F., Sun, Y., & Dragutan, V. (2024). Recent Developments in Multifunctional Coordination Polymers. Crystals, 14(4), 301. https://doi.org/10.3390/cryst14040301